
To Distribute or Not to Distribute? Why Licensing Bugs Matter
Christopher Vendome

College of William and Mary
Williamsburg, VA

Daniel M. German
University of Victoria

BC, Canada

Massimiliano Di Penta
University of Sannio
Benevento, Italy

Gabriele Bavota
Università della Svizzera italiana (USI)

Lugano, Switzerland

Mario Linares-Vásquez
Universidad de los Andes

Bogotá, Colombia

Denys Poshyvanyk
College of William and Mary

Williamsburg, VA

ABSTRACT
Software licenses dictate how source code or binaries can be modi-
fied, reused, and redistributed. In the case of open source projects,
software licenses generally fit into two main categories, permissive
and restrictive, depending on the degree to which they allow redis-
tribution or modification under licenses different from the original
one(s). Developers and organizations can also modify existing li-
censes, creating custom licenses with specific permissive/restrictive
terms. Having such a variety of software licenses can create con-
fusion among software developers, and can easily result in the in-
troduction of licensing bugs, not necessarily limited to well-known
license incompatibilities. In this work, we report a study aimed at
characterizing licensing bugs by (i) building a catalog categorizing
the types of licensing bugs developers and other stakeholders face,
and (ii) understanding the implications licensing bugs have on the
software projects they affect. The presented study is the result of
the manual analysis of 1,200 discussions related to licensing bugs
carried out in issue trackers and in five legal mailing lists of open
source communities. Our findings uncover new types of licensing
bugs not addressed in prior literature, and a detailed assessment of
their implications.

CCS CONCEPTS
• Software and its engineering → Open source model; • So-
cial and professional topics → Licensing;

KEYWORDS
Software Licenses, Empirical Studies, Open Source Practices

ACM Reference Format:
Christopher Vendome, Daniel M. German, Massimiliano Di Penta, Gabriele
Bavota, Mario Linares-Vásquez, and Denys Poshyvanyk. 2018. To Distribute
or Not to Distribute? Why Licensing Bugs Matter. In ICSE ’18: ICSE ’18:
40th International Conference on Software Engineering , May 27-June 3, 2018,
Gothenburg, Sweden. ACM, New York, NY, USA, 12 pages. https://doi.org/
10.1145/3180155.3180221

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5638-1/18/05. . . $15.00
https://doi.org/10.1145/3180155.3180221

1 INTRODUCTION
Software licenses define the terms under which a software system
(either its code or binary) can legally be distributed, modified, and
reused. As of today, there are over 100 known open source soft-
ware licenses [61, 62]. In a broad sense, licenses can be divided
into two categories: restrictive licenses (such as the General Public
License—GPL—family of licenses), requiring the redistribution of
derivative work under the same licensing terms, and permissive
licenses, which impose few restrictions (such as the MIT license).
Open source communities also have their own restrictions and
guidelines concerning the adoption of software licenses. For exam-
ple, the Apache Software Foundation requires contributions to be
licensed under the Apache-2.0 License. Similarly, Debian utilizes
the “Debian Social Contract” [60] or “Debian Free Software Guide-
lines” (DFSG) to evaluate whether a license is free or non-free; this
evaluation directly determines whether a piece of software can be
bundled into Debian or must be distributed separately.

Prior empirical studies [39, 43, 45, 47, 56–58, 65, 67, 68] showed
that (i) developers face difficulties in choosing the appropriate li-
cense for their work as well as in understanding the legal implica-
tions behind licenses, and (ii) incompatibilities between licenses can
represent a serious threat from a legal perspective for both open
source and commercial software. These two pieces of evidence com-
bined suggest that licensing issues are likely to occur in software
projects and that their effect could be non-negligible. However, as of
today, there is limited evidence in the literature about the licensing
issues that developers generally face and of their legal/technical
implications [43]. In this work, we refer to such issues as licensing
bugs, mostly related to legal incompatibilities of licensed software
and to the breach of guidelines that can prevent software from
being distributed or modified (e.g., by preventing a patch from be-
ing accepted). While licensing bugs may not be as pervasive as
other types of bugs, they have the ability to block development and
prevent software from being released, and in the worst case, may
result in monetary implications.

We present a large-scale qualitative study aimed at characterizing
licensing bugs, with the goal of understanding the types of licensing
bugs developers face, their legal and technical implications, and how
such bugs are fixed. In this study, we aim at answering the following
research question: What are the types of licensing bugs faced by
developers? Specifically, we investigate the types of licensing bugs
that developers discuss (and try to solve) in various sources of
communications. We aim to define a catalog of licensing bugs,
which includes the impacted stakeholders, the implications and
ability to address the licensing bugs.

https://doi.org/10.1145/3180155.3180221
https://doi.org/10.1145/3180155.3180221
https://doi.org/10.1145/3180155.3180221


ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Christopher Vendome et al.

To this aim, wemined 59,426 discussions (from issue trackers and
mailing lists) carried out by software developers and likely related to
licensing bugs. Then, we manually analyzed — via an open-coding
procedure — a statistically significant sample of 1,200 discussions,
randomly selected from the initial set of 59,426 discussions. During
the manual analysis, we transcribed the type of licensing bugs, their
implications, and possible fixes.

As a result of the open coding, we present a catalog of seven
categories and 21 sub-categories of licensing bugs. During our
analysis, we observed licensing bugs that had not been previously
addressed in the research community. These licensing bugs relate
to jurisdiction of laws, non-source/non-binary artifacts, and ecosys-
tem policies. We also observe that the lack of freeness can prevent
the distribution of software. In the context of this paper, freeness
refers to a community’s expectations for a license not to impose
unreasonable restrictions on the distribution and the modification
of software. In the global scope of open source software, freeness
refers to the utilization of an open source license; however, a com-
munity can definemore stringent guidelines (i.e., not all open source
licenses may be viewed as free by a particular community). The
term freeness is not equivalent to gratis (i.e., being without charge
or free in a monetary sense), but it refers to the ability for others
to reuse, redistribute, and modify some entity (typically but not
limited to source code and binaries). Additionally, we observed that
the stakeholders related to licensing bugs vary from developers to
patch integrators and lawyers.

Our proposed catalog can serve as a reference for developers
and lawyers dealing with potential licensing issues. Additionally,
it can help open source community refine their guidelines so that
contributors have a more clear understanding of their implications.
Lastly, tool designers and researchers can utilize our catalog to
assist developers with open source license compliance.

2 RELATEDWORK
A substantial part of the research work carried out in the software
licensing field focused on the definition of techniques and tools
supporting the automatic identification of licenses in software prod-
ucts. For instance, the FOSSology project [49] exploited machine
learning techniques to automatically classify licenses, thus, support-
ing the task of license identification for a given software. Tuunanen
et al. [63] presented ASLA, a reverse engineering tool supporting
the identification of software licenses with an accuracy of 89%. Af-
terwards, German et al. [48] proposed Ninka, an approach using
sentence matching and currently representing the state-of-the-art,
with a precision of 95%. Di Penta et al. [42] proposed an approach
relying upon code search in order to identify the licensing of jars.
Finally, German et al. [44] analyzed 523,930 archives in order to
understand the impact the accuracy of identifying FOSS licenses
when used in conjunction with proprietary licensing.

Previous work has also analyzed the usage, evolution and incon-
sistencies of open source licensing in software projects. Di Penta
et al. [43] investigated the migration of licenses over the course
of a project’s lifetime. Their study suggests that licenses changed
version and type during software evolution, but there were no
generic patterns generalizable to the six analyzed FOSS projects.
German et al. [47] analyzed 124 open source packages exploited

by several applications to understand how developers deal with
license incompatibilities. Based on this analysis, they built a model
outlining when specific licenses are applicable and what are their
advantages and disadvantages. Later, German et al. [45] presented
an empirical study focused on the binary packages of the Fedora-12
Linux distribution aimed at (i) understanding if licenses declared in
the packages were consistent with those present in the source code
files, and (ii) detecting licensing issues derived by dependencies
between packages. As a result of their investigation, German et
al. [45] were able to find some licensing issues confirmed by Fedora.
Manabe et al. [51] analyzed the changes in licenses of FreeBSD,
OpenBSD, Eclipse, and ArgoUML, finding that each project had
different evolution patterns. Vendome et al. [67] investigated li-
cense usage and changes in licensing to understand the rationale
behind potential usage and changes. Vendome et al. [68] also inves-
tigated when developers pick a particular license or changes the
license(s) and conducted a survey to understand the underlying
perspective and rationale of developers with respect to choosing
or changing their system’s licensing. Almeida et al. conducted a
survey to investigate the extent to which developers understand
licenses [39]. License inconsistencies have also been analyzed in
a study by German et al., which considered code clones between
Linux and two BSD distributions [46] as well as a study by Wu et
al, which considered code clones in Debian 7.5 with inconsistent
licensing, potentially representing license violations [69].

Most of the aforementioned work has focused on C/C++ and Java
languages. However, few studies have focused on other languages,
for instance, Mlouki et al. [54] investigated license violations and
their evolution in 857 open source Android apps; 229 releases for
17 of the analyzed apps were found to have license issues, in par-
ticular, violations to the terms of open source licenses. Vendome
et al. [66] found 14 different license exceptions (i.e., additional
grants/restrictions specified by the copyright holders beyond the
canonical license) in 298 files from open source projects developed
in six programming languages; although license exceptions are not
prevalent in open source projects, they may introduce license bugs
since they modify the canonical versions of open source licenses.

The study presented in this paper is orthogonal (but complemen-
tary) to prior work. Indeed, we aim at defining a detailed catalog of
licensing bugs faced by developers, with the goal of characterizing
them, studying their implications, and how they are fixed. To the
best of our knowledge, this is the first work systematically
investigating the nature and implications of licensing bugs.

3 EMPIRICAL STUDY DESIGN
We aim at addressing the following question: What are the types of
licensing bugs faced by developers? We investigate licensing bugs in
FOSS projects, by characterizing them in terms of types, difficulties
they pose, their implications on legal and technical aspects, and the
ability to (or the extent to which) licensing bugs can be addressed (or
resolved). To this, we mined developers’ discussions from (i) issue
trackers hosted on GitHub [28] and Bugzilla [10], and (ii) mailing
lists specialized in legal aspects of software products. All the data
used in this study are available in the attached appendix [38].

We defined a catalog of licensing bugs, highlighting their type,
the stakeholders that are impacted by the bugs, the implications of
the licensing bugs, and the extent to which they can be addressed.



To Distribute or Not to Distribute? Why Licensing Bugs Matter ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

3.1 Identification of Candidate Licensing Bugs
from Developers’ Discussions

The issue trackers and mailing lists provided us with complemen-
tary insights with respect to licensing bugs. The issue trackers fa-
cilitate reporting of the bug, while the mailing lists provide deeper
discussion related to licensing bugs with respect to both legality
and community guidelines. We performed an open coding of the
data source to build a catalog of licensing bugs.

We focused on mailing lists dealing with the discussion of le-
gal aspects of software products, and in particular: Apache’s legal-
discuss [2], Debian’s debian-legal [12], Fedora’s fedora-legal-list [26],
Gnome’s legal-list [27], and OpenStack’s legal-discuss [36]. All the
considered mailing lists have publicly available archives storing all
messages exchanged through them. Once the archives were down-
loaded, we automatically identified discussions linking each mes-
sage to the corresponding email thread by exploiting the “Message-
id” field in the “In-reply-to” field. This allowed us to analyze each
message in the context of the discussion, thus favoring an easier
interpretation of the legal issue being discussed. In total, we had
45,019 candidate messages with licensing bugs.

Concerning the issue trackers, we mined the 136 Bugzilla issue
trackers listed in the Bugzilla’s installation list [6]. To identify issues
relevant to licensing, we queried the Bugzilla’s search functional-
ity using the keyword “license”. This led to the selection of 2,125
candidate licensing bugs. Additionally, we mined the issue trackers
of 86,032 projects hosted on GitHub. We selected projects that (i)
are not a fork (to avoid duplications), and (ii) have at least one star,
watcher, or fork (to perform a first cleaning of “toy" projects) [50];
we then locally cloned these repositories and filtered out all projects
with less than fifty commits, again with the goal of removing trivial
projects. Out of the selected 258,057 projects, we considered 86,032
projects that had an issue tracker. In particular, we crawled the can-
didate licensing-related issues (including the issue title, description,
metadata, and related discussion) from each issue tracker by using a
keyword search mechanism exploiting specific licensing keywords
(e.g., copyright) or license names (e.g., GPL) [67]. This keywords-
based search resulted in 12,282 candidate licensing-related issues.

After gathering the data, we randomly selected issues and mes-
sages, and performed a pre-coding. During this step, all authors
coded 100 randomly selected issues to create an initial set of codings,
and to ensure that they were utilizing a consistent criteria when
coding issues and messages. Since we observed a high percentage
(approximately 67%) of false positives in this initial pre-coding (i.e.,
discussions unrelated to licenses), we performed a pre-filtering to
remove false positives. To this aim, one author read a randomly
selected issue or message to determine whether it contained a li-
censing bug. If the author concluded that it was a false positive, the
issue or discussion was discarded from the set of issues/messages
to be coded. This process was performed repeatedly for each data
source until reaching 400 documents containing a candidate licens-
ing bug from each source, for a total of 1,200 issues/messages. The
number of 400 documents per data source represents a statistically
significant sample with 95% confidence level and a confidence in-
terval of ±4.42% for Bugzilla issues, ±4.82% for GitHub issues, and
±4.88% for mailing list messages (we ensured having a confidence
interval smaller or equal to ±5%).

3.2 Definition of the Catalog of Licensing Bugs
To devise our catalog of bugs, we manually inspected the 1,200
selected mailing list and issue tracker discussions (from now on,
generally referred to as “discussions”) via an open-coding proce-
dure [53]. The goal was to categorize the type of licensing bugs. We
divided the 1,200 documents among the authors such that each doc-
ument was coded by at least two-authors for two-author agreement,
obtaining a list of 21 initial categories (each discussion belonging to
a single category). While we had attempted to filter data to remove
false positives, there were still 78 documents identified as false pos-
itives (6.5%) and 21 tagged as unclear (1.83%). These two categories
are omitted from the presented catalog in the results.

Each discussion was randomly assigned two of the authors to
independently categorize it. After each round, the two authors
discussed and resolved conflicts, and generated categories from the
codings. Before solving conflicts, the coding achieved an agreement
ratio of 65%. To determine whether such agreement level was due
to chance, we computed the Cohen’s kappa inter-rater agreement
coefficient [41], which resulted to 0.53 (moderate agreement).

After, we defined a higher level of abstraction over the set of
21 initial distinct categories using a card-sorting approach [59].
To this aim, the 21 categories were presented in a spreadsheet,
and two of the authors independently reordered the categories
and clustered them. After that, they discussed the clusters they
had created, and converged to a common solution. In the end, this
resulted in grouping license bugs into seven distinct categories,
listed in the 21 sub-categories previously identified (Table 1).

4 CATALOG OF LICENSING BUGS
We present and discuss the catalog of licensing bugs obtained by
following the procedure described in Section 3. Specifically, we
present a description of each licensing bug, the stakeholders most
directly impacted by the particular licensing bug (i.e., the individu-
als most directly responsible for them and their remediation), the
implications (both legal and technical) of the bugs, and the extent
to which they can be addressed/fixed. Also, we provide examples
of discussions related to that particular category of licensing bug.
While previous studies on licensing [68] mostly focused on devel-
opers, we consider different stakeholders impacted by the bugs:
(1) Integrators: developers that are reusing open source software

within their own systems;
(2) PackageMaintainers: developers responsible for maintaining

packages and integrating patches or bug-fixes into existing
distributions of software;

(3) Distributors: any individual or entity distributing software,
which can be a single developer, an open source foundation/-
community (e.g., Apache), or a company (e.g., IBM);

(4) Developers: this category relates to developers in general,
without making specific distinctions;

(5) Lawyers: interpreting licensing in terms of the existing laws
or responsible for drafting new licenses;

(6) Lawmakers: people responsible for writing and passing laws;
(7) Community: either people involved in a specific open source

community, or the open source community as a whole;
(8) TrademarkHolders: companies or individuals that have trade-

marked their name or logo (e.g., as a means of brand protection).



ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Christopher Vendome et al.

Table 1: Catalog of Licensing Issues with (# of Discussions).

Laws and Their Interpretations (169)
What is Copyrightable? (20)
What is a Derivative Work? (30)
What is the Jurisdiction? (14)
License Interpretation (44)
Clarification Issues (61)

Policies of the Ecosystem (133)
Community Guidelines (34)
Freeness: can I reuse it? (99)

Potential License Violations (129)
Compatibility between Licenses (86)
Other Types of License Violations (43)

Non-source Code Licensing (45)
Documentation Licensing (16)
Font and Media Licensing (29)

Licensing Content (485)
Incorrect Licensing (37)
License Inconsistencies (183)
Licensing Missing (207)
License Textual Issues (46)
Outdated/Obsolete Licensing (12)

Other Intellectual Property Issues (63)
Rights to Use a Contribution (35)
Patent-Related Issues (20)
Trademark (8)

License Semantics (76)
Dual Licensing (16)
License/Clause Implication (60)

The taxonomy is composed of 21 distinct sub-categories orga-
nized in 7 distinct high-level categories (Table 1). Due to space
limitations, we only discuss a subset of the sub-categories (14). The
complete taxonomy description and frequencies of each category
can be found in the attached appendix [38]. In the reported ex-
amples, we have adjusted formatting (e.g., removing mid-sentence
newlines) in some cases, but the wording remains unchanged. It
is important to remark that the results discuss the interpretation
of developers and/or legal practitioners. Therefore, it is possible
that the legality of these interpretations or discussions may change
(e.g., new interpretations can cause new legal precedents in the
U.S.A.), or the enforceability may change in different jurisdictions.
Our results have the purpose of discussing these interpretations
and implications from the perspective of the developers and legal
practitioners within particular open source communities.

4.1 Laws and Their Interpretations
This category comprises licensing bugs related to different interpre-
tations of licenses provided by different people and organizations as
well as to how licenses are interpreted under different jurisdictions.

4.1.1 What is Copyrightable?
Description: Developers experience issues when trying to under-
stand the implications or scope of copyright coverage. We observed
discussions regarding copyright and emulation, legal consequences
of game console emulators, executed programs, or donated code.
We also observed discussions related to textual updates to copy-
rights, e.g., copyright year upgrade. We found that the scope of the
coverage is not necessarily clear for developers. While software is
copyrightable (the basis of free and open source software licensing),

higher-level design and ideasmay fall out of the scope of copyright
law. Potential disagreements on the coverage of copyright protec-
tion can potentially lead to the infringement of another entity’s
copyright. In an example below, we demonstrate the difficulty to
understand the coverage of copyright for game emulation.
Stakeholders: Developers and lawyers.
Implications: It has been demonstrated that copying as few as 27
lines of code can constitute copyright infringement [52]. Violating
these laws can result in legal action against developers and prevent
the distribution or reuse of the system violating the copyright (see
the subsection on License Violation). However, the scope of copy-
right law (similar to patent and trademarks) can only be addressed
by lawyers, and to truly define the scope it would require law-
makers to more explicitly or rigidly define the extent of copyright;
alternatively, in precedent-based legal systems, prior court rulings
may also serve to define the scope and implications of copyright.
Examples: In terms of emulation, one individual commented in
the thread that emulation of the games themselves can be illegal,
“That second case is pretty much where we stand with a *lot*
of game console emulators out there – the only way to get data
to use with them is to break the law. Wonderful.” [23]

However, another developer posits whether it still complies with
copyright law explaining:
“Is it illegal if I own a game cartridge, and dump it? That part
probably isn’t; US copyright law, at least, give me permission to
make a backup copy.” [23]

Such an issue requires legal consultation since emulations could be
legal in certain cases, but creating a game emulator could violate a
company’s IP. Thus, the determination of freeness for an emulator
would depend upon the dependencies to run the emulator and the
potential IP infringement.

4.1.2 What is a Derivative Work?
Description:A derivative work is partially owned by the copyright
author on which it is originally based. In order to be able to dis-
tribute a derivative work, its creator needs a license from the work
on which it is based. In fact, one of the most important features
of open source licenses is that they should allow the creation and
redistribution of derivative works. However, some licenses place
important restrictions on such redistribution (e.g., the GPL family of
licenses requires that any derivative work must also be distributed
under the GPL). Therefore, when a software system reuses another
product, the question on whether the former is a derivative work
of the latter is critical. This issue might affect not only software,
but also non-software artifacts, like images.
Stakeholders: Distributors, package maintainers, integrators.
Implications: If a product A is a derivative work of product B,
the license of product B can impose restrictions on how product A
can be used and licensed to others. Such restrictions could mean
that product A might not be used or licensed as expected. Or, if
product A is redistributed, it could result in legal liability due to
the risk of copyright infringement. On the other hand, if product
A is not a derivative work of product B, it might be possible to
redistribute product B along product A, as long as the license of
product B is properly satisfied. Thus, evaluation of whether a work
is considered derivative work can either result in license violations
or incompatibilities if the derivative work is considered non-free or
subject to the terms of an incompatible restrictive license. To cope



To Distribute or Not to Distribute? Why Licensing Bugs Matter ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

with such bugs, when possible developers can use/ask for license
exceptions [66].
Examples: Some systems provide clarifications on whether some-
thing is considered a derivative work of another. For example, there
has been a long discussion on what is a derivative work of the Linux
kernel. Linus Torvalds clarifies this in the COPYING file,
“NOTE! This copyright does not cover user programs that use
kernel services by normal system calls - this is merely considered
normal use of the kernel, and does not fall under the heading
of “derived work". Also note that the GPL below is copyrighted
by the Free Software Foundation, but the instance of code that
it refers to (the Linux kernel) is copyrighted by me and others
who actually wrote it.” [34]

However, there is still plenty of disagreement on this issue [64].
In a discussion regarding firmware being derivative work, one

individual cites US copyright law and how it defines derivative
work and collections. One developer replies:
“However – by this definition, the linux kernel is very definitely
a derivative work, and the firmware is content which has been
incorporated into the kernel.” [18]

The developer that presented the legal text follows up saying:
“The kernel (I assume as a whole) is a derivative work of what? I
would argue that the kernel is a compilation of what executes on
the host CPU with other parts (boot logos, fonts, and firmware
data). The executable part may be a derivative in part of Adam
Richter’s code, but that does not necessarily make the kernel as
a whole a derivative of his work.” [19]

The difference in interpretations demonstrates the difficulty distin-
guishing the extent that derivative work applies as well as distin-
guishing between derivative work and collective work.

4.1.3 What is the Jurisdiction?
Description:We observed licensing bugs related to the differences
in laws across countries. Copyright, trademark and patent laws are
national in scope. While the World Intellectual Property Organi-
zation (WIPO) attempts to unify intellectual property law around
the world, specific issues of the law might be different from one
country to another. Also, software is affected by other laws, such
as restrictions on trade. For example, moral rights are enshrined in
the copyright laws of Europe and Canada, but they are not present
in the copyright laws of the United States.
Stakeholders: Distributors, developers, and lawmakers.
Implications: These differences might not be large, but they might
have an important impact on the ability to create and distribute
software.They might also have an impact on any potential litigation
(and the choice of jurisdiction). In fact, we observed that clauses
related to choice of jurisdiction were a controversial topic within
Debian in terms of their impact on software’s freeness. However,
the distribution may be impacted by external factors like trade re-
strictions to a particular country or distribution of what a country
considers sensitive material. While organizations or communities
may want to facilitate global reuse, the organizations and individu-
als must comply with these trade laws. Also, government funded
work (e.g., supported by a grant) may require release of the software
for public domain domestically (i.e., within the funding country),
but the government may impose restrictions internationally, which
can only be addressed by policy changes by the funding entity.

Thus, these cases are predominantly external to developers, but
impose restrictions that must be considered.
Examples: In debian-legal, there is question regarding a texture
created by NASA and the possibility to reuse the texture. While
one person indicates that the copyright would depend on whether
it was done by NASA itself or a contractor (e.g., a contractor of the
Jet Propulsion Laboratory), another person comments:
“While a work may be in the public domain in the U.S., it may
be under copyright elsewhere. So, e.g., while works by the U.S.
government may be public domain in the U.S., they may remain
under copyright in other countries. However, the U.S. govern-
ment may license their works and thus give permissions with
respect to these foreign copyrights.“ [17]

Thus, the copyright issues become further complicated by the fact
that government created works might only be released domestically
into the public domain [1].

Another post in debian-legal suggests that Gentoo was being
utilized as a base distribution in Cuba, since Debian is blocked due
to the US embargo with Cuba. Another person responds:
“It is my understanding that it is illegal under US law to know-
ingly export software (free software or otherwise) from the US
to Cuba, or to Cuban nationals.” [14]

Even though Gentoo is being utilized instead of Debian, it would
seem that both distributions would not be legally distributable to
Cuba. Further follow-up discussion discusses that Debian is not
illegal in Cuba, but the knowing distribution to Cuba is illegal. The
discussion highlights the difficulty understanding the implications
of embargoes on software and the extent to which (if at all) a
distributor could face legal repercussions if that distributor knew
that the software would be distributed to an embargoed country.

4.2 Policies of the Ecosystem
This category comprises licensing bugs related to the licensing poli-
cies of specific open source communities, e.g., the Apache Software
Foundation, Debian, the Eclipse Software Foundation, or Fedora.
The bugs are originated from how a particular community defines
the freeness of software, which can be stricter than utilizing a free
and open source license, and how the community interprets licenses
based upon their policies.

4.2.1 Community Guidelines.
Description: This category relates to discussions about both the
creation and modification of the guidelines of the ecosystem. These
decisions determine the vetting of a software license’s compatibility
with community goals as well as manifests the perspective of a par-
ticular community towards open source development. Additionally,
this category pertains discussion related to creating new licenses
in order to comply with a community’s guidelines.
Stakeholders: Community and lawyers.
Implications: Issues in this category have wide reaching reper-
cussions and impact on a community. Unlike other licensing bugs,
these reflect the collaborative effort within a community to en-
force a particular licensing policy. The community needs to protect
itself from legal liability of distributing potentially incompatible
code, while also forging collaborations between the open source
community and corporations. Thus, lawyers are also important in
designing the guidelines to legally protect the community from po-
tentially violating licensing. The agreed upon guidelines will have



ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Christopher Vendome et al.

a long term impact in the community and will serve as a contract
that specifies what licensing actions are appropriate and which are
not. As a consequence, they have the potential to restrict the pool
of software that can be reused/integrated into a new product.
Examples: We observe an issue with Eclipse’s community restric-
tions on software licensing. To circumvent the restriction, end-users
assume the burden to properly configure their environment to uti-
lize that software. The developer states:
“A number of projects would like to integrate with external
libraries under licenses not compatible with the EPL (LGPL, ...).
What can be done in order to help end-users come up with a
working environment easily? Clearly, * The LGPL library must
be installed from a source hosted outside Eclipse * A CQ must
be filed indicating the dependency as "works-with" or "requires"
But how can end-users or other clients be instructed to get the
complete environment going?” [7]

This shows the difficulty in meeting the needs of developers, while
also facilitating reuse. The community guidelines impose practices
to impede the use of any restrictively-licensed (e.g., LGPL, GPL,
etc.) software. The community belief is that this mitigates licensing
issues/risks. However, the example also demonstrates that risk-
mitigation may come at the cost of more difficulties for end-users.

4.2.2 Freeness: can I reuse it?
Description: Some of the most important questions to ask about
a given software system are: What is its license? Is this license
giving me the rights to incorporate the software into my own
product? For example, the Free Software Foundation (FSF) and
Open Source Initiative (OSI) define what, in their opinion, free and
open source software (respectively) is. Furthermore, the FSF has
specific guidelines on whether software with various licenses can
be combined/derived along software licenses under the FSF licenses.
Debian’s DSFG indicates what are the characteristics of licenses for
software to be integrated in Debian distributions.

This category affects the integration of many types of artifacts,
such as source code, images (icons, logos), databases, text files,
etc. Ultimately, the creation and enactment of similar guidelines
by anybody developing software (whether open source or not)
provides an opportunity for an up-front discussion on what legal
risks an organization is willing to take, and, as a consequence, the
pool of artifacts that can be reused.
Stakeholders: Integrators, package maintainers, & distributors.
Implications: In the case of Debian and Fedora, software with
non-free licenses cannot be included in the main distribution and
must be distributed separately. We observe one type of discussion
relating to the freeness of open source licenses, in particular the
GPL, QPL, AGPL, and Artistic License. Additionally, it is important
that the entire system meets the community guidelines, including
the needed dependencies. However, source code and binaries are
not the only artifacts evaluated. Since IP clearance/evaluation ex-
tends to all bundled artifacts (not only source code and binaries),
a non-free image or font could prevent the distribution of the soft-
ware. Last, but not least, the community discusses specific clauses
concerning how to deal with “Freeness” requirements.
Examples: We observe in RedHat’s Bugzilla tracker that a license
of mpage prevents source code modification, which makes the
license non-free. The reporter of the bug states in the first two
comments on the issue tracker:

“mpage included non-free code, Please see Debuan [sic] bug
number “805370" details. I think that this package be affected by
debian bug number “805370"...Blocking FE-Legal, This is license
problem.” [8]

In summary, the statement above highlights the impact of the li-
censes in terms of one’s ability to re-distribute the software.

We also observed that the “Choice of Venue” clause, which stip-
ulates the location for a lawsuit regarding license infringement,
sparked an extensive debate, since it imposes an additional restric-
tion on developers reusing the software. At the same time, the
absence of such a clause could penalize the original developer.

During the debate regarding which side can be discriminated
against, one developer cited the opposing situation to a frivolous
lawsuit by the original author by stating:
“Whereas the alternative may be that licensors are unable to
afford the enforcement of their license. Would you prefer to
discriminate against them?” [13]

While the goal is to prevent disenfranchising someone due to his
or her financial status, the “Choice of Venue” clause is inherently
difficult to evaluate as it is orthogonal to this factor.

4.3 Potential License Violations
This section discusses the typical licensing bugs arising because
licensing clauses have been violated, e.g., due to integration with
components containing incompatible licenses.

4.3.1 Compatibility between Licenses.
Description: This category is related to issues relating to reusing
softwarewith different licenses. These issues arise when a developer
utilized dependencies or reused source code that is not compatible
with either the declared license, or with the license of other reused
components. We observe incompatibilities between the license of
dependencies to the systems reusing (or seeking to reuse) them.
Additionally, a dependent artifact may change its licensing, possibly
introducing a licensing incompatibility. These bugs also discuss
the compatibility of licenses to understand under what condition
software under two licenses can be used together (if all). These
compatibility issues may also be related to a community’s standards,
e.g., Apache Software Foundation requiring the Apache Software
License for submitted contributions.
Stakeholders: Integrators, package maintainers, and distributors.
Implications: These incompatibility issues impact the ability to
distribute the software, since at least one license of reused software
is being violated from the incompatibility. These issues will either
stall a patch or prevent a submitted system from being distributed
within a community. These bugs can require substantial effort to fix,
depending on the available replacement options for the violating
code or the ability to migrate the software’s license in order to
be compatible with the reused code. To address these issues, the
original developers need to remove the incompatible code/binary
and find an alternative implementation that is licensed under a
compatible license. In the case of a community’s standard, it can also
be problematic, since migrating the system’s license can introduce
other violations between dependencies or violate the community
guidelines. For example, a project belonging to the Apache Software
Foundation cannot migrate towards the GPL license. Additionally, a
license change can prevent newer releases of a certain library from
being integrated and forcing developers to rollback to a compliant



To Distribute or Not to Distribute? Why Licensing Bugs Matter ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

release of that library. Thus, these issues are not always trivial to
fix and can cause a longer delay for a contribution to be accepted.
Examples: In an issue on GitHub, a developer comments:

“As mentioned in twbs/bootstrap#2054 as well as here, Bootstrap
can not be used within any GPLv2 project as the Apache License
2.0 is incompatible. This just needs to be re-licensed under the
GPLv3 to resolve this issue.”[5]

The project’s owner acknowledges that the license will be updated
during the current rewriting of part of the code base. Interestingly,
another respondent follows up saying that the compatibility is
based on the Free Software Foundation’s interpretation and the
Apache Software Foundation differs; however, the assertion is either
misinterpreted or outdated as the Apache Software Foundation does
not assert compatibility with GPL-2.0 [31].

Similarly, we observe an issue in the Apache mailing list stating:

“Be advised that at least 5 Apache projects appear to depend
on a third party library known as “greenmail" which advertises
itself in may [sic] places as being licensed under the ASL 2.0,
however most of the greemail [sic] source files contain headers
claiming LGPL” [3]

The issue relates to a dependency for unit test code (greenmail)
and whether it is acceptable under Apache’s licensing guidelines.
The community discussed whether the dependency is acceptable,
since the code is not bundled and not distributed. However, the issue
was resolved in a new release of greenmail updating its licensing
to ensure that all files were licensed under Apache-2.0.

4.3.2 Other Types of License Violations.
Description: This category addresses issues that are considered
license violations but do not fall into the prior category. These bugs
are serious in nature and usually require removing or rewriting code.
Otherwise, it might not be possible to continue distributing the
product. These license violations can also be related to several other
categories in our catalog, e.g., incorrect licensing of derivative work
or incorrect interpretations of licensing clauses. License violations
can apply beyond software licensing with potential violations of
the End User License Agreement (EULA).
Stakeholders: Distributors, integrators, and developers.
Implications: License violations prevent software, whether it is a
patch or an entire system, from being distributed. By violating the
license, it amounts to illegally distributing copyrighted material.
These violations can only be addressed by the original developer,
since the infringing code must be removed, or the software’s license
needs to be changed (if that addresses the violation). In fact, a
Munich district court’s injunction prevented the distribution of
Fortinet Ltd’s software until complying with the GPL [33]. Thus, it
can directly impact a person or company’s ability to distribute their
project, and it could result in other civil penalties. Therefore, these
licensing bugs are among the most severe as they directly impact
software distribution and can involve a large technical effort to
remedy the violation.
Examples:We observed a severe violation where it appears that
a developer stole code and removed the original author from the
copyright statement of the file(s). The author posts to the GitHub
issue tracker stating:

“Right now you’re in violation of the MIT license that ember-
tools uses. http://opensource.org/licenses/MIT I am the copy-
right holder of the code you’ve essentially stolen. You have not
kept my name in the copyright holders.”1

The issue demonstrates how violating the terms specified in the
license, in this case the MIT license, results in the code being es-
sentially stolen, since it is misappropriating the copyright holder
by removing him from the copyright notice.

We observed an email thread where ICQ’s EULA prohibits the
connection of third-party software and a developer suggests remov-
ing the third-party applications from inclusion in Fedora, stating:

“...Thus, keeping in mind, that there is no way to use ICQ-related
software w/o explicitly violating their license agreement, and
there are many other open alternatives (and even proprietary
systems, which permits 3rd party applications), I think that
software, designed to work with explicit requirement to be con-
nected to ICQ network, should be considered as unacceptable
for inclusion into Fedora”[25]

The discussion regarding this draws into consideration whether
such restrictions would then result in the software being non-free.

4.4 Non-Source Code Licensing
Non-source and non-binary licensing constitute an important as-
pect of license compliance that has not been addressed in prior
works, which have focused predominantly on the licensing of source
code or inferring the license of binaries. Tools to support software
license compliance should also consider non-code and non-binary
artifacts to properly evaluate license compliance.

4.4.1 Documentation Licensing.
Description: Documentation, like source code, is also protected by
copyright. Hence, it is necessary to license it. Open source licenses
must make sure that the documentation can also be modified and
redistributed. While software licenses were designed with source
code in mind, we have observed that they are frequently used to
license documentation. Although developers can utilize the GNU
Free Documentation License [29] or a Creative Commons license
[11], not all of the Creative Commons licenses may be considered
free (e.g., Debian indicated that the Creative Commons Attribution
License version 1.0 is not compatible with the Debian Free Soft-
ware Guidelines), which can cause issues within a community from
distributing the documentation.
Stakeholders: Distributors.
Implications: These licensing bugs could prevent a package from
being accepted for redistribution by a community, since the redis-
tribution would either constitute distributing a copyrighted work
or distributing an incompatibly licensed work (incompatible in the
sense of community standards). Migrating the documentation’s
license may be the easiest way to address these types of bugs.
However, we also observe a potential license violation for docu-
mentation, when the source of the documentation is not available.
While the documentation itself is available, it may not be modifiable
according to the terms of the software license.
Examples: We observe an issue where the documentation (li-
censed under the GPL) is provided as a set of HTML files. However,
these files were automatically generated. The individual states:
1Quote anonymized given the sensitive nature to protect the identity.



ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Christopher Vendome et al.

“...no source code is provided for the .html documentation files.
The GPL is explicit on the definition of source code: ‘The source
code for a workmeans the preferred form of the work for making
modifications to it.’ The term ‘source code’ has a precise meaning
within the GPL, which differs slightly from the everyday use of
the term. The html files are not source code as the term is used
in the GPL license, because the documentation is maintained
in a different form, and converted to html. Html files, while
human-readable, are extremely inconvenient to modify. They
are certainly not the ‘preferred form’ for making modifications."
[24]

Since the HTML was automatically generated, the developer’s com-
ments indicate that the software license would require the docu-
mentation’s source, which is not provided. However, it is important
to note that this example prevents others from redistributing the
software. One developer noted this by responding:
“I don’t see how Trolltech are violating anything though, since
they own the copyright. They just aren’t being particularly use-
ful, so we can’t redistribute the offending html documents”[22]

Therefore, the copyright holder can distribute the material. How-
ever, the terms of the license cannot be satisfied, which prevents
others from redistributing the documentation.

4.4.2 Font and Media Licensing.
Description: We observed issues and discussions related to the
licensing of fonts and media (e.g., images and audio). In both cases,
we observed issues related to redistribution. In the case of fonts,
we observed potential violations to the font licensing as well as
non-freeness of their licensing. Similar violations occurred for me-
dia, along with some confusion on the interpretation of software
licensing in the context of media, e.g., audio. Additionally (and ex-
pectedly), we observed discussions concerning copyrighted images
that could not be re-distributed with software.
Stakeholders: Distributors.
Implications: We observed that the licensing of these artifacts
could also impact the ability to distribute a system. Indeed, these
non-source/non-binary artifacts are still subject to community
guidelines compliance, which developers may not realize initially.
In addition, the implications of software licensing is not as clear
in the context of non-source or non-binary entities. For example,
interpreting the concept of source code (e.g., the GPL-3.0 defines it
as “the preferred form of the work for making modifications to it”
[30]) is less clear in the context of audio (i.e., does the audio file
itself qualify or does it require a different representation as well).
To address these issues, non-free fonts or images might have to be
removed, but this also requires developers to find replacements.
Examples:We observed issues related to media resources licensing
and copyright images. In a discussion regarding the “source code”
of audio licensed under the GPL-2.0, one developer noted:
“Unless the creators of the podcast directly edit the MP3–which
is rather unlikely–the MP3 is not the preferred form for modi-
fication and putting the MP3 under GPL without releasing the
raw audio files grants no rights at all. GPLing video has a similar
problem.” [15]

The issue demonstrates the difficulty of utilizing software licenses
for media resources, since the creator may not be aware, as another
developer indicates:

“It’s a bug. If the original author puts a video under GPL and
doesn’t release the “source", you can’t demand it. He’s not bound
by the GPL since he can’t violate the copyright on his own work,
so he has no obligation to give you anything."[16]

However, these bugs may also be due to the creators of the audio
or video files being unaware of this consideration, since they do
not store the intermediate files when finished.
4.5 Licensing Content
This category describes bugs related to how licenses are docu-
mented in software projects, and whether there have been some
inconsistencies in doing that.

4.5.1 License Inconsistencies.
Description: License inconsistencies occur when there is a mis-
match between the documented license and the source code licens-
ing. These licensing bugs may relate to the location of the licensing
file, the usage of licensing-related macros and annotations (e.g., in
Ruby .gemspec files), licensing headers on the source code, or how
multi-licensing is represented in the specification or documentation.
Thus, the system’s licensing may not cause a license incompatibility,
but its content could be misrepresented or incomplete.
Stakeholders: Distributors and package maintainers.
Implications: These licensing bugs typically do not impact the
acceptance of a package or patch (i.e., it does not prevent IP clear-
ance checks). However, they may stall the software distribution. In
particular, certain communities may require the license to be in a
spec file before the community can list and distribute the software.
Also, they are typically issues of documentation (i.e., errors of how
to document) more than errors in licensing. These licensing bugs
are relatively simple to fix, since the original developer(s) can add
the proper annotation, move the license file, or add license headers
without having to modify the actual system (i.e., the source code
itself does not require any change). Additionally, the developer
typically receives feedback regarding the inconsistency during the
contribution review process.
Examples: During a package review in RedHat’s Bugzilla tracker,
the reviewer evaluated the licensing and found that there was an
inconsistency in the software’s licensing and the spec file. The
reviewer notes at the top of the package review:
“To fix: Licensing is both MIT/BSD and GPLv2 and GPLv2+,
latter two are missing in spec file and in %license.”[9]

While these licensing bugs are relatively trivial to fix as the com-
ment reported above suggests, it is important to properly enumerate
the complete licensing from a package manager’s perspective.

4.6 Other Intellectual Property Issues
This category does not pertain specifically to licenses but, rather, it
is related to whether there have been issues in handling intellectual
property in a software project, for example because of how the
Contributor License Agreement has been defined, or because of
patent or trademark implications.

4.6.1 Rights to Use a Contribution.
Description:Many software systems, in order to clarify the prove-
nance of their code have instituted the requirement that any contri-
bution should be accompanied with a CTA or a CLA [55]. Contribu-
tor License Agreements (CLAs) and Copyright Transfer Agreements
(CTAs) are important for intellectual property (IP) reviews. A CLA
stipulates the terms of contribution (e.g., the legal right to submit



To Distribute or Not to Distribute? Why Licensing Bugs Matter ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

the code). We observed three different types of bugs in this category:
(i) CLA creation, where the project has not established a CLA for
contributors, (ii) CLA changes, where the CLA itself needs to be
amended, (iii) missing CLA, where a contributor has not submitted
a CLA. Alternatively to a CLA, CTAs transfer the ownership of the
copyright from the original author (or current copyright holder) to
another person(s) or legal entity.
Stakeholders: Package maintainers and integrators.
Implications: Projects that require CTAs/CLAs do it to reduce
their legal risks. They require any contributor to (i) guarantee
that they have the right of the contribution, and (ii) license or
transfer ownership of the contribution to the project. If this does
not happen, these projects will not merge contributions/patches.
Some organizations, e.g., the Apache Software Foundation and the
Eclipse Software Foundation, have strong policies and workflows to
include the submission and verification of CLAs in the contribution
process. It is important to note that CLAs/CTAs are optional in the
sense that an organization is not required to use them. However,
it demonstrates that these open source communities would rather
reject contributions than increase the legal risk of distributing code
that may contain a license violation.
Examples:We observed a message posted to appframework’s issue
trackers where a developer stated:
“If you’re interested in clean IP, you’ll want a CLA before accept-
ing any contributions – otherwise, you may encounter issues
of people contributing code that is not theirs to contribute. For
example, see the Dojo CLA. ” [4]

The issue highlights the importance of having a CLA from the
perspective of integrators of submitted patches. The issue poster
states the concern that the IP could be compromised if the submitter
of a patch does not have the right to distribute that code. Lastly,
the poster provides a CLA example to aid the project owners.

4.6.2 Patent-Related Issues.
Description: These bugs are related to the use of software patents
owned by the licensor of the software. Software patents protect
the ideas and inventions used in the source code and binaries,
while copyright protects its expression. We observed issues re-
lated to patent-clause of licenses, in particular automatic license-
termination in the event of a patent lawsuit. Alternatively, there are
also discussions regarding the implications of patented artifacts.
Stakeholders: Lawyers and distributors.
Implications: Recently, licenses (e.g., GPL-3.0 and Apache-2.0)
have started to address particular issues related to patents, including
their litigation. For example, engaging in patent litigationwith work
that is derivative or reuses source/binaries under these licenses
will invalidate the license. However, companies such as IBM have
written similar clauses related to automatic license-termination,
which sparked further debate on the freeness of these license (i.e.,
the ability for an organization to revoke a license at anytime adds a
“restriction” on reuse). The automatic-termination and the debate
on freeness may prevent the distribution of the software. In the first
case, the software cannot be distributed if the license is revoked;
in the latter case, the community’s guidelines may prevent the
distribution of the software.
Examples: In debian-legal, a question related to IBM’s license-
termination clauses emphasizes the difficulty of dealing with soft-
ware patents:

“It’s not possible to know about what patents cover a work of
software because: (a) the existence of a patent is secret until it’s
approved (b) software is just an abstract collection of energy –
it’s what it symbolizes that makes it tread on a patent, or not
(c) patents are written in a fashion which does not make their
applicability to a work of software immediately evident.” [20]

The person explains that patented code would be problematic re-
gardless of a termination clause within IBM’s license, and suggests it
should be acceptable to Debian. However, the message also demon-
strates the difficulty of patented software, since the patent may be
approved at a later date and the scope/applicability of the patent
may require legal consultation.

4.6.3 Trademark.
Description: According to the United States Copyright Office, “A
trademark protects words, phrases, symbols, or designs identifying
the source of the goods or services of one party and distinguishing
them from those of others.” [32]. Primarily, we observe the discus-
sion related to trademarked names and logos, such as the Debian
logo and package/bundle names.
Stakeholders: Distributors, Communities & Trademark Holders.
Implications: Companies use trademarks to protect their brand,
since they prevent external entities from misrepresenting their
products or organization. These restrictions can prove problematic
within an community. Organizations want to provide a quality
guarantee, but communities like Debian, debate the freeness of these
restrictions (i.e., preventing someone from using the same product
name or logo). The concern is predominantly for the distributor
that needs to ensure that trademarks are upheld. However, it also
impacts the community, since the members must determine if these
restrictions are in-line with their guidelines. The trademark holder
can license the usage of trademarks and address these issues.
Examples: For example, Mozilla allows for their Firefox and Thun-
derbird trademarks to be used to identify unmodified official re-
leases [35]. Organizations can impose different requirements re-
garding trademark usage, but it can be seen as a mechanism to
guarantee a level of quality similar to the original system [40].

In debian-legal, there are several discussions related to freeness of
trademarks. One commenter replied regarding trademarked names
and distributed package names by stating:

“Over the years there have been a large number of packages in
the archive for software whose upstream has a trademark on
their name, none of whom have granted open-ended licenses
to use these trademarks. We nevertheless have always made a
practice of using those names unmodified as package names and
binary names, on the grounds that these are interfaces that are
*not subject to trademark*. This is why, whereas RedHat ships
packages of ’httpd’, Debian has always had packages of ’apache’
even though the Apache trademark license clearly states that
modified versions of the software may not use the mark. The
trademark license is only relevant if we’re doing something
that’s in scope for trademark law in the first place!” [21]

The message highlights the policy of Debian to keep the names
and suggesting that such a usage is analogous to the scope of trade-
mark law. Interestingly, the message also shows how a company
like RedHat takes a more cautious approach to prevent possibly
infringing on trademark restrictions.



ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Christopher Vendome et al.

4.7 Licensing Semantics
This section discusses licensing bugs related to difficulty and con-
fusion with the usage of dual licensing or understanding the impli-
cations of either a license or particular clauses of a license.

4.7.1 License/Clause Implications.
Description: These licensing bugs relate to understanding the
implications of the license as a whole or a particular clause of a
license. These licensing bugs can relate to the discussion of license
migrations, where developers discuss the implications of the license
migration on their system and if the new license would have legal
implications on the current state of the system (e.g., the license
migration could result in a license violation based on licensing
constraints from reused code or dependencies). These licensing
bugs also discuss the implications that a clause, such as the "or
later" clause of the GPL, on a system in the future.
Stakeholders: Developers and Integrators.
Implications: The litigious nature of licenses can make under-
standing the implications of certain licenses difficult. This can result
in developers picking a license that does not meet their needs or
expectations. Similarly, it can prevent developers from adopting or
migrating towards certain licenses based on their uncertainty of
the ramifications of such a decision (e.g., whether the new license
is compatible with the licenses of the software’s dependencies or
whether a license satisfies the business model of the developers).
Additionally, it may impact integrators trying to reuse the software,
since the original developers may be apprehensive to modifying
the license from the lack of understanding. Conversely, integrators
may also misunderstand the implications of a clause, which can
inhibit their reuse of that software.
Examples: We observed developers discussing migrating towards
GPL-2.0+ (i.e., GPL “or later”) in order to facilitate reuse in software
licensed under GPL-3.0. However, the implications of this “or later”
clause was also seen as potentially dangerous. One developer indi-
cated the possible risk of not agreeing with the terms of a future
version of the GPL. Although the protections and restrictions of
such a license are unknown, the clause indicates that the software
can be licensed under such terms. Another developer expresses
apprehension towards this stating:
“In fact, you should not trust any third party (even if it is FSF)
about future modifications of the license which have not been
taken into account by the copyright holders.” [37]

The example demonstrates that the importance regarding the im-
plications of a clause, which may appear harmless initially (as
developers in the discussion initially seemed to open to the change)
but could have more a serious long term impact.

5 LESSONS LEARNED
Copyright laws are complex, and frequently have no simple an-
swer. Some issues are relatively well understood (such as copying
code from one application) but others are not. We observed that
in some open source projects there are discussions in terms of
whether an action has the potential to violate copyright; usually,
these discussions are among developers, who do not necessarily
have the proper understanding of copyright law, and usually lack
professional legal advice. The main implication is that there exists
an overall lack of training or education about software licensing,

and developers need to be better trained on copyright law in or-
der to have a better understanding of the potential risks. Large
organizations sponsoring open source projects should have legal
advice available to minimize such risks. Similarly, the discussions
and (mis)interpretations illustrate developers would greatly benefit
from more support by (semi)automated license analysis.

Additionally, communities acknowledge these difficulties relat-
ing to copyright and define guidelines to reduce the legal risk of dis-
tributing software. Debian achieves this through the DFSG, which
vets potential licenses according to freeness; however, the Apache
Foundation asserts that contributions must all be licensed under
the Apache license. Open source projects also contain a review
process and can use CLAs/CTAs as an IP assurance mechanism.
Developers should carefully consult the community practices prior
to contributing to decrease the potential licensing-related impedi-
ments when contributing. Future licensing recommenders should
incorporate community’s expectations/conventions.

Finally, a software project may comprise artifacts beyond source
code, including documentation or media. Their copyright and li-
cense must also be accounted from a compliance perspective. Also,
importantly, if some of these artifacts (e.g., documentation) are auto-
matically generated from a source code, the latter shall be included
to consider the whole software distribution to be open source.

6 THREATS TO VALIDITY
Threat to construct validity: we mainly base our assessment and
classification of licensing-related bugs on what is stated in mailing
lists and issues. Nevertheless, it is possible that what is reported in
such a written communication may be incomplete and imprecise.

Threats to internal validity: we mitigated this threat by (i) using a
pre-coding phase to agree on the coding criteria, (ii) having multiple
coders and a discussion process to solve cases of inconsistent coding,
and (iii) computing inter-rater agreement statistics to determine
whether agreements are due to chance.

Threats to external validity: while on one hand we have analyzed
different data sources (mailing lists, Bugzilla and GitHub issue
trackers) coming from different ecosystems, it is possible that the
catalog we have created depends on the particular issues discussed
for the studied projects, and that in other contexts developers could
discuss issues we did not encounter.

7 CONCLUSIONS
We analyzed 1,200 documents from issue trackers and legal mailing
lists to devise a catalog of licensing bugs containing issues devel-
opers and other stakeholders face with respect to licensing. We
present descriptions of the bugs, the individuals they impact, their
implications, and the ability to address them. The set of licensing
bugs is diverse, which suggests that more effort should be devoted
to support practitioners when dealing with licensing-related issues.
We observed that licenses are also utilized with non-source code
files such as fonts. While we found examples of license violations
and incompatibilities, we also observed that communities may im-
pose stricter guidelines to evaluate the freeness of a license, as done
by Debian with the DFSG. Thus, compatibility relates to both the
licenses themselves and the community constraints.

This project is supported in part via NSF CAREER CCF-1253837 and CCF-1525902.



To Distribute or Not to Distribute? Why Licensing Bugs Matter ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

REFERENCES
[1] 2017. 17 USC 105: Subject matter of copyright: United States Govern-

ment works http://uscode.house.gov/view.xhtml?hl=false&edition=prelim&req=
granuleid%3AUSC-prelim-title17-section105. (2017).

[2] 2017. Apache legal-discuss mail list. legal-discuss@apache.org. (2017).
[3] 2017. Apache legal message: "greenmail" library purported to be ASLmay actually

be LGPL; is a dependency in several ASF projects https://issues.apache.org/jira/
browse/LEGAL-206. (2017).

[4] 2017. Appframework issue 21. https://github.com/01org/appframework/issues/21.
(2017).

[5] 2017. bootstrap-admin issue: Incompatible License https://github.com/aristath/
bootstrap-admin/issues/12. (2017).

[6] 2017. Bugzilla installation list. https://www.bugzilla.org/installation-list/. (2017).
[7] 2017. Bugzilla issue: [ip] Best Practices for interfacing with libs that are not EPL

compatible https://bugs.eclipse.org/bugs/show_bug.cgi?id=246945. (2017).
[8] 2017. Bugzilla issue: mpage included non-free code https://bugzilla.redhat.com/

show_bug.cgi?id=1295170. (2017).
[9] 2017. Bugzilla issue: Review Request: limnoria - Amodified version of Supybot (an

IRC bot) with enhancements and bug fixes https://bugzilla.redhat.com/bugzilla/
show_bug.cgi?id=1342747. (2017).

[10] 2017. Bugzilla. https://www.bugzilla.org/. (2017).
[11] 2017. Creative Commons Licenses. https://creativecommons.org/licenses/.

(2017).
[12] 2017. Debian-legal mail list. https://wiki.debian.org/DebianLegal. (2017).
[13] 2017. Debian legal message: Re: CDDL, OpenSolaris, Choice-of-venue and the star

package ... https://lists.debian.org/debian-devel/2005/09/msg00440.html. (2017).
[14] 2017. Debian legal message: Re: Debian and Cuba https://lists.debian.org/

debian-legal/2005/03/msg00493.html. (2017).
[15] 2017. Debian legal message: Re: Debian-approved creative/content license?

https://lists.debian.org/debian-legal/2007/03/msg00065.html. (2017).
[16] 2017. Debian legal message: Re: Debian-approved creative/content license?

https://lists.debian.org/debian-legal/2007/03/msg00069.html. (2017).
[17] 2017. Debian legal message: Re: Help about texture inclueded in stellarium

https://lists.debian.org/debian-legal/2004/07/msg00832.html. (2017).
[18] 2017. Debian legal message: Re: How long is it acceptable to leave *undis-

tributable* files in the kernel package? https://lists.debian.org/debian-legal/2004/
06/msg00381.html. (2017).

[19] 2017. Debian legal message: Re: How long is it acceptable to leave *undis-
tributable* files in the kernel package? https://lists.debian.org/debian-legal/2004/
06/msg00383.html. (2017).

[20] 2017. Debian legal message: Re: IBM Jikes license. https://lists.debian.org/
debian-legal/1998/12/msg00107.html. (2017).

[21] 2017. Debian legal message: Re: Packaging the MeeGo stack on Debian - Use the
name ?. https://lists.debian.org/debian-legal/2011/01/msg00011.html. (2017).

[22] 2017. Debian legal message: Re: Trolltech GPL violation? https://lists.debian.org/
debian-legal/2006/01/msg00011.html. (2017).

[23] 2017. Debian legal message: Re: Visualboy Advance question. https://lists.debian.
org/debian-legal/2004/06/msg00619.html. (2017).

[24] 2017. Debian legal message: Trolltech GPL violation? https://lists.debian.org/
debian-legal/2006/01/msg00000.html. (2017).

[25] 2017. Fedora legal message: Re: [Fedora-legal-list] Status of ICQ-related apps
in Fedora. https://mid.mail-archive.com/legal@lists.fedoraproject.org/msg00185.
html. (2017).

[26] 2017. Fedore-legal list. https://www.redhat.com/archives/fedora-legal-list/.
(2017).

[27] 2017. Genome-legal list. https://mail.gnome.org/archives/legal-list/. (2017).
[28] 2017. Github. https://github.com/. (2017).
[29] 2017. GNU Free Documentation License. https://www.gnu.org/licenses/fdl-1.3.

en.html. (2017).
[30] 2017. GNUGeneral Public License. http://www.gnu.org/licenses/gpl.html. (2017).
[31] 2017. GPL compatibility. http://apache.org/licenses/GPL-compatibility.html.

(2017).
[32] 2017. https://www.copyright.gov/help/faq/faq-general.html. (2017).
[33] 2017. An injunction against Fortinet for GPL violations. https://lwn.net/Articles/

132143/. (2017).
[34] 2017. Linux Copying File: https://github.com/torvalds/linux/blob/master/

COPYING. (2017).
[35] 2017. Mozilla Trademark Policy for Distribution Partners. https://www.mozilla.

org/en-US/foundation/trademarks/distribution-policy/. (2017).
[36] 2017. OpenStack legal-discuss. http://lists.openstack.org/cgi-bin/mailman/

listinfo/legal-discuss. (2017).
[37] 2017. picotcp issue: Upgrade license to GPLv2+ or GPLv3+ https://github.com/

tass-belgium/picotcp/issues/408. (2017).
[38] 2017. To Distribute or Not to Distribute? Why Licensing Bugs Matter - Appendix.

(2017).
[39] D. A. Almeida, G. C. Murphy, G. Wilson, and M. Hoye. 2017. Do Software

Developers Understand Open Source Licenses?. In 2017 IEEE/ACM 25th In-
ternational Conference on Program Comprehension (ICPC). 1–11. DOI:http:

//dx.doi.org/10.1109/ICPC.2017.7
[40] P. Chestek. 2013. Who owns the project name? International Free and Open

Software Law Review 5, 2 (2013).
[41] J Cohen. 1960. A coefficient of agreement for nominal scales. Educ Psychol Meas.

20 (1960), 37–46.
[42] Massimiliano Di Penta, Daniel M. Germán, and Giuliano Antoniol. 2010. Identi-

fying licensing of jar archives using a code-search approach. In Proceedings of
the 7th International Working Conference on Mining Software Repositories, MSR
2010 (Co-located with ICSE), Cape Town, South Africa, May 2-3, 2010, Proceedings.
151–160.

[43] Massimiliano Di Penta, Daniel M. Germán, Yann-Gaël Guéhéneuc, and Giuliano
Antoniol. 2010. An exploratory study of the evolution of software licensing. In
Proceedings of the 32nd ACM/IEEE International Conference on Software Engineer-
ing - Volume 1, ICSE 2010, Cape Town, South Africa, 1-8 May 2010. 145–154.

[44] Daniel M. Germán and Massimiliano Di Penta. 2012. A Method for Open Source
License Compliance of Java Applications. IEEE Software 29, 3 (2012), 58–63.

[45] DanielM. Germán,MassimilianoDi Penta, and Julius Davies. 2010. Understanding
and Auditing the Licensing of Open Source Software Distributions. In The 18th
IEEE International Conference on ProgramComprehension, ICPC 2010, Braga, Minho,
Portugal, June 30-July 2, 2010. 84–93.

[46] Daniel M. Germán, Massimiliano Di Penta, Yann-Gaël Guéhéneuc, and Giuliano
Antoniol. 2009. Code siblings: Technical and legal implications of copying code
between applications. In Proceedings of the 6th International Working Conference
on Mining Software Repositories, MSR 2009 (Co-located with ICSE), Vancouver, BC,
Canada, May 16-17, 2009, Proceedings. 81–90.

[47] Daniel M. Germán and Ahmed E. Hassan. 2009. License integration patterns:
Addressing license mismatches in component-based development. In 31st Interna-
tional Conference on Software Engineering, ICSE 2009, May 16-24, 2009, Vancouver,
Canada, Proceedings. 188–198.

[48] Daniel M. Germán, Yuki Manabe, and Katsuro Inoue. 2010. A sentence-matching
method for automatic license identification of source code files. In ASE 2010, 25th
IEEE/ACM International Conference on Automated Software Engineering, Antwerp,
Belgium, September 20-24, 2010. 437–446.

[49] Robert Gobeille. 2008. The FOSSology project. In Proceedings of the 2008 Interna-
tional Working Conference on Mining Software Repositories, MSR 2008 (Co-located
with ICSE), Leipzig, Germany, May 10-11, 2008, Proceedings. 47–50.

[50] Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer, Daniel M.
German, and Daniela Damian. 2014. The Promises and Perils of Mining GitHub.
In Proceedings of the 11th Working Conference on Mining Software Repositories
(MSR 2014). 92–101.

[51] Yuki Manabe, Yasuhiro Hayase, and Katsuro Inoue. 2010. Evolutional analysis
of licenses in FOSS. In Proceedings of the Joint ERCIM Workshop on Software
Evolution (EVOL) and International Workshop on Principles of Software Evolution
(IWPSE), Antwerp, Belgium, September 20-21, 2010. 83–87.

[52] Nancy J. Mertzel. 2008. Copying 0.03 percent of software code base not ‘de
minimis’. Journal of Intellectual Property Law & Practice 3, 9 (2008), 547. DOI:
http://dx.doi.org/10.1093/jiplp/jpn130

[53] Matthew B. Miles and A. Michael Huberman. 1984. Qualitative Data Analysis: A
Sourcebook of New Methods. Sage, Beverly Hills, CA.

[54] O. Mlouki, F. Khomh, and G. Antoniol. 2016. On the Detection of Licenses
Violations in the Android Ecosystem. In 2016 IEEE 23rd International Conference
on Software Analysis, Evolution, and Reengineering (SANER), Vol. 1. 382–392. DOI:
http://dx.doi.org/10.1109/SANER.2016.73

[55] Germán Poo-Caamaño and Daniel M. German. 2015. The Right to a Contribution:
An Exploratory Survey on How Organizations Address It. In 11th International
Conference on Open Source Systems (OSS) (Open Source Systems: Adoption and
Impact), Vol. AICT-451. 157–167. Part 5: Intellectual Property and Legal Issues.

[56] Param Singh and Corey Phelps. 2009. Networks, Social Influence, and the Choice
Among Competing Innovations: Insights from Open Source Software Licenses.
Information Systems Research 24, 3 (2009), 539–560.

[57] Manuel Sojer, Oliver Alexy, Sven Kleinknecht, and Joachim Henkel. 2014. Un-
derstanding the Drivers of Unethical Programming Behavior: The Inappropriate
Reuse of Internet-Accessible Code. J. of Management Information Systems 31, 3
(2014), 287–325.

[58] Manuel Sojer and Joachim Henkel. 2010. Code Reuse in Open Source Software
Development: Quantitative Evidence, Drivers, and Impediments. Journal of the
Association for Information Systems 11, 12 (2010), 868–901.

[59] Donna Spencer. 2009. Card sorting: Designing usable categories. Rosenfeld Media.
[60] SPI. 2017. Debian Social Contract. https://www.debian.org/social_contract.

(2017).
[61] The Free Software Foundation. 2017. Various Licenses and Comments about

Them. https://www.gnu.org/philosophy/license-list.html. (2017).
[62] The Open Source Initiative. 2017. Open Source Licenses. http://opensource.org/

licenses/category. (2017).
[63] Timo Tuunanen, Jussi Koskinen, and Tommi Kärkkäinen. 2009. Automated

software license analysis. Autom. Softw. Eng. 16, 3-4 (2009), 455–490.
[64] Sam Varghese. 2017. Linux developer loses GPL

suit against VMware http://www.itwire.com/open-source/

http://uscode.house.gov/view.xhtml?hl=false&edition=prelim&req=granuleid%3AUSC-prelim-title17-section105
http://uscode.house.gov/view.xhtml?hl=false&edition=prelim&req=granuleid%3AUSC-prelim-title17-section105
legal-discuss@apache.org
https://issues.apache.org/jira/browse/LEGAL-206
https://issues.apache.org/jira/browse/LEGAL-206
https://github.com/01org/appframework/issues/21
https://github.com/aristath/bootstrap-admin/issues/12
https://github.com/aristath/bootstrap-admin/issues/12
https://www.bugzilla.org/installation-list/
https://bugs.eclipse.org/bugs/show_bug.cgi?id=246945
https://bugzilla.redhat.com/show_bug.cgi?id=1295170
https://bugzilla.redhat.com/show_bug.cgi?id=1295170
https://bugzilla.redhat.com/bugzilla/show_bug.cgi?id=1342747
https://bugzilla.redhat.com/bugzilla/show_bug.cgi?id=1342747
https://www.bugzilla.org/
https://creativecommons.org/licenses/
https://wiki.debian.org/DebianLegal
https://lists.debian.org/debian-devel/2005/09/msg00440.html
https://lists.debian.org/debian-legal/2005/03/msg00493.html
https://lists.debian.org/debian-legal/2005/03/msg00493.html
https://lists.debian.org/debian-legal/2007/03/msg00065.html
https://lists.debian.org/debian-legal/2007/03/msg00069.html
https://lists.debian.org/debian-legal/2004/07/msg00832.html
https://lists.debian.org/debian-legal/2004/06/msg00381.html
https://lists.debian.org/debian-legal/2004/06/msg00381.html
https://lists.debian.org/debian-legal/2004/06/msg00383.html
https://lists.debian.org/debian-legal/2004/06/msg00383.html
https://lists.debian.org/debian-legal/1998/12/msg00107.html
https://lists.debian.org/debian-legal/1998/12/msg00107.html
https://lists.debian.org/debian-legal/2011/01/msg00011.html
https://lists.debian.org/debian-legal/2006/01/msg00011.html
https://lists.debian.org/debian-legal/2006/01/msg00011.html
https://lists.debian.org/debian-legal/2004/06/msg00619.html
https://lists.debian.org/debian-legal/2004/06/msg00619.html
https://lists.debian.org/debian-legal/2006/01/msg00000.html
https://lists.debian.org/debian-legal/2006/01/msg00000.html
https://mid.mail-archive.com/legal@lists.fedoraproject.org/msg00185.html
https://mid.mail-archive.com/legal@lists.fedoraproject.org/msg00185.html
https://www.redhat.com/archives/fedora-legal-list/
https://mail.gnome.org/archives/legal-list/
https://github.com/
https://www.gnu.org/licenses/fdl-1.3.en.html
https://www.gnu.org/licenses/fdl-1.3.en.html
http://www.gnu.org/licenses/gpl.html
http://apache.org/licenses/GPL-compatibility.html
https://lwn.net/Articles/132143/
https://lwn.net/Articles/132143/
https://github.com/torvalds/linux/blob/master/COPYING
https://github.com/torvalds/linux/blob/master/COPYING
https://www.mozilla.org/en-US/foundation/trademarks/distribution-policy/
https://www.mozilla.org/en-US/foundation/trademarks/distribution-policy/
http://lists.openstack.org/cgi-bin/mailman/listinfo/legal-discuss
http://lists.openstack.org/cgi-bin/mailman/listinfo/legal-discuss
https://github.com/tass-belgium/picotcp/issues/408
https://github.com/tass-belgium/picotcp/issues/408
http://dx.doi.org/10.1109/ICPC.2017.7
http://dx.doi.org/10.1109/ICPC.2017.7
http://dx.doi.org/10.1093/jiplp/jpn130
http://dx.doi.org/10.1109/SANER.2016.73
https://www.debian.org/social_contract
https://www.gnu.org/philosophy/license-list.html
http://opensource.org/licenses/category
http://opensource.org/licenses/category
http://www.itwire.com/open-source/74288-linux-developer-loses-gpl-suit-against-vmware.html
http://www.itwire.com/open-source/74288-linux-developer-loses-gpl-suit-against-vmware.html


ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Christopher Vendome et al.

74288-linux-developer-loses-gpl-suit-against-vmware.html. (2017).
[65] Christopher Vendome, Gabriele Bavota, Massimiliano Di Penta, Mario Linares-

Vásquez, Daniel German, and Denys Poshyvanyk. 2016. License usage and
changes: a large-scale study on gitHub. Empirical Software Engineering (2016),
1–41.

[66] C. Vendome, M. Linares-Vásquez, G. Bavota, M. Di Penta, D. German, and D.
Poshyvanyk. 2017. Machine Learning-Based Detection of Open Source License
Exceptions. In 9th IEEE/ACM International Conference on Software Engineering
(ICSE’17).

[67] Christopher Vendome, Mario Linares-Vásquez, Gabriele Bavota, Massimiliano
Di Penta, Daniel M. Germán, and Denys Poshyvanyk. 2015. License Usage and
Changes: A Large-Scale Study of Java Projects on GitHub. In The 23rd IEEE

International Conference on Program Comprehension, ICPC 2015, Florence, Italy,
May 18-19, 2015. IEEE, 31–40.

[68] Christopher Vendome, Mario Linares-Vásquez, Gabriele Bavota, Massimiliano
Di Penta, Daniel M. German, and Denys Poshyvanyk. 2015. When and Why
Developers Adopt and Change Software Licenses. In The 31st IEEE International
Conference on Software Maintenance and Evolution, ICSME 2015, Bremen, Germany,
September 29 - October 1, 2015. IEEE, 31–40.

[69] Yuhao Wu, Yuki Manabe, Tetsuya Kanda, Daniel M. Germán, and Katsuro Inoue.
2015. A Method to Detect License Inconsistencies in Large-Scale Open Source
Projects. In The 12th Working Conference on Mining Software Repositories MSR
2015, Florence, Italy, May 16-17, 2015. IEEE.

http://www.itwire.com/open-source/74288-linux-developer-loses-gpl-suit-against-vmware.html

	Abstract
	1 Introduction
	2 Related Work
	3 Empirical Study Design
	3.1 Identification of Candidate Licensing Bugs from Developers' Discussions
	3.2 Definition of the Catalog of Licensing Bugs 

	4 Catalog of Licensing Bugs
	4.1 Laws and Their Interpretations
	4.2 Policies of the Ecosystem
	4.3 Potential License Violations
	4.4 Non-Source Code Licensing
	4.5 Licensing Content
	4.6 Other Intellectual Property Issues
	4.7 Licensing Semantics

	5 Lessons Learned
	6 Threats to Validity
	7 Conclusions
	References

