
When and Why Developers Adopt and Change
Software Licenses

Christopher Vendome1, Mario Linares-Vásquez1, Gabriele Bavota2,
Massimiliano Di Penta3, Daniel German4, Denys Poshyvanyk1

1The College of William and Mary, VA, USA — 2Free University of Bolzano, Italy
3University of Sannio, Italy — 4University of Victoria, BC, Canada

Abstract—Software licenses legally govern the way in which
developers can use, modify, and redistribute a particular system.
While previous studies either investigated licensing through
mining software repositories or studied licensing through FOSS
reuse, we aim at understanding the rationale behind develop-
ers’ decisions for choosing or changing software licensing by
surveying open source developers. In this paper, we analyze
when developers consider licensing, the reasons why developers
pick a license for their project, and the factors that influence
licensing changes. Additionally, we explore the licensing-related
problems that developers experienced and expectations they have
for licensing support from forges (e.g., GitHub).

Our investigation involves, on one hand, the analysis of the
commit history of 16,221 Java open source projects to identify
the commits where licenses were added or changed. On the other
hand, it consisted of a survey—in which 138 developers informed
their involvement in licensing-related decisions and 52 provided
deeper insights about the rationale behind the actions that
they had undertaken. The results indicate that developers adopt
licenses early in the project’s development and change licensing
after some period of development (if at all). We also found
that developers have inherent biases with respect to software
licensing. Additionally, reuse—whether by a non-contributor or
for commercial purposes—is a dominant reason why developers
change licenses of their systems. Finally, we discuss potential
areas of research that could ameliorate the difficulties that
software developers are facing with regard to licensing issues
of their software systems.

Index Terms—Software Licenses, Mining Software Reposito-
ries, Empirical Studies

I. INTRODUCTION

Software licenses are the legal mechanism used to determine
how a system can be copied, modified, or redistributed.
Software licenses allow a third party to utilize code as long
as they adhere to the conditions of the license. In particular,
open source licenses are those that comply with the Open
Source Definition [4]. Specifically, the goal of these licenses
is to facilitate further copying, modifying, and distributing
software as long as a set of ten conditions are met (such as
free redistribution and availability of source code).

For software to be open source, its creators must choose
an open source license. However, there is a large number of
open source licenses in use today. They range from highly
restrictive (such as the General Public License—GPL—family
of licenses) to ones with very few restrictions (such as the MIT
license). The choice of a license will determine if, and how,
a given open source software can be reused. This is espe-
cially true for libraries that are expected to be integrated and

distributed with the software that uses them. Furthermore, the
choice of a license might also be affected by the dependencies
used (e.g., software that uses a library under the GPL requires
the software to be GPL also, while software that uses a library
under the MIT license can be under any license, including
commercial).

At some point, the creators of open source software must
choose a license that: 1) expresses the developers’ philosophy;
2) meets their deployment goals, and 3) is consistent with the
licenses of the components reused by that software. However,
choosing a license is not an easy process. Developers do not
necessarily have a clear idea on the exact consequences of
licensing (or not licensing) their code under a specific license;
for instance, developers ask questions on Question & Answer
(Q&A) websites looking for advice on how to redistribute
code licensed with a dual license among the other issues (e.g.,
question 2758409 in Stack Overflow [19] and question 139663
in the StackExchange site for programmers [28]). Also, the
problem of license incompatibility between components is not
trivial (see [15] for a detailed description of this problem).

During the evolution of a software system, its license
might change. In our previous work [30], we empirically
showed—for software hosted in GitHub—that license changes
are common phenomena. Stemming from the results that we
previously captured by analyzing licensing and their changes
in software repositories [30], the goal of this work is to under-
stand when and why changes in licensing happen. Specifically,
this paper reports the results of a survey of 138 developers
with the aim of understanding (i) when developers consider
adding a license to their project, (ii) why they choose a
specific license for their projects, and (iii) factors influencing
license changes. The 138 participants are the respondents
from a set of 2,398 invitees, i.e., 5.75% of the invitees. We
identified such developers by sampling 16,221 Java projects on
GitHub, and then subsetting to 1,833 projects where the license
changed over time. Of these 138 developers, 52 developers
offered insights to the aforementioned questions, while the
remaining developers reinforced that licensing decisions are
not necessarily made by all contributors, but by a subset that
are the copyright holders. The main findings of this study are
as the following:

1) Developers frequently license their code early, but the
main rationale for delaying licensing is usually to wait
until the first release;



TABLE I
PREVIOUS STUDIES INVESTIGATING SOFTWARE LICENSING.

Study Purpose Dataset
German et al. [13] Investigate the presence of license incompatibilities 3,874 packages
Di Penta et al. [10] Investigate license evolution during a system’s maintenance and evolution 6 systems
German et al. [15] Investigate the way in which developers address incompatible licensing 124 systems
German et al. [14] Investigate licensing between copied code fragments in Linux and two BSD distributions 3 systems
Manabe et al. [20] Investigate license change patterns within FOSS systems 4 systems
Sing et al. [25] Investigate the reasons for the adoption of a particular FOSS license 5,307 projects
Sojer et al. [27] Investigate reuse and legal implication of Internet code 686 developers
Sojer et al. [26] Investigate FOSS code reuse 869 developers
Vendome et al. [30] Investigate license usage and changes in FOSS systems and the rationale in the revision history and issue tracker 16,221 systems

2) Developers have strong intrinsic beliefs that affect their
choice of licenses. Also, open source foundations, such
as the Apache Software Foundation, the Free Software
Foundation, and the Eclipse Software Foundation exert a
powerful influence on the choice of a license;

3) We observed that the change of a license(s) of a system is
predominantly influenced by the need to facilitate reuse
(mostly in commercial systems);

4) Developers experience difficulties in understanding the
licensing terms and dealing with incompatible licenses.

II. RELATED WORK

Our work is mainly related to (i) the automatic identification
and classification of licensing in software artifacts, (ii) empiri-
cal studies investigating license adoption and license evolution,
(iii) qualitative studies on software licensing. Table I presents
prior work in licensing by reporting the main purpose of each
study and the corresponding dataset used.

A. Identifying and Classifying Software Licensing
Automatic identification of software licensing has been

widely explored before. To the best of our knowledge, the
FOSSology project [17] was the first one aimed at solving the
problem of license identification by extracting the licensing
information of projects and using machine learning for clas-
sification. Another representative project is the ASLA tool by
Tuunanen et al. [29], which showed an 89% accuracy with
respect to classifying the licenses of files in FOSS systems.

The current state-of-the-art automated tool for license iden-
tification, Ninka, was proposed by German et al. [16]. Ninka
relies on pattern-matching in order to identify licensing state-
ments and return the license name and version (e.g., Apache-
2.0). The evaluation of Ninka indicated a precision of 95%.

Since software is not always distributed with or as source
code, the traditional approaches for license identification that
are based on the parsing of the licensing statements are not
always applicable (byte-code or binaries do not inherently
contain licensing information). To ameliorate this problem, Di
Penta et al. [9] proposed an approach that uses code search
and textual analysis to automatically identify the licensing of
jars. The approach automatically queried Google Code Search
by extracting information from decompiled code. Additionally,
German et al. investigated the ability to identify FOSS li-
censing in conjunction with proprietary licensing by analyzing
523,930 archives [12].

In this paper, we rely on Ninka [16] for license identifica-
tion, since it is the current state-of-the-art technique. However,

our work does not aim to improve upon license identification
or classification, but, rather, to understand the rationale behind
licensing decisions.

B. Empirical Studies on Licenses Adoption and Evolution

Di Penta et al. [10] investigated license migration during
the evolution and maintenance of six FOSS projects. While
the authors were unable to find a generalizable pattern among
the projects, the results suggested that both version and type
of license were modified during the systems’ life cycles.

German et al. [15] investigated the way in which developers
handle license incompatibilities by analyzing 124 FOSS pack-
ages and from this investigation they constructed a model that
outlines the advantages and disadvantages of certain licenses
as well as their applicability. Additionally, German et al. [13]
conducted an empirical study to (i) understand the extent to
which package licensing and source code files were consistent
and (ii) evaluate the presence of licensing issues due to the
dependencies among the packages. The authors investigated
3,874 packages of the Fedora-12 Linux distribution and they
confirmed a subset of licensing issues with the developers
at Fedora. Manabe et al. [21] analyzed FreeBSD, OpenBSD,
Eclipse, and ArgoUML in order to identify changes in licens-
ing. The authors found that each of the four projects exhibited
different patterns of changes in licensing.

German et al. analyzed fragments of cloned code between
the Linux Kernel and both OpenBSD and FreeBSD [14]. They
investigated the extent to which terms of the licenses were
adhered during the cloning of these code fragments. Similarly,
Wu et al. [31] found that cloned files have a potential to
be inconsistent in terms of licenses (e.g., one has a license,
while the other does not). The paper describes the types of
inconsistencies and illustrates the problem and the difficulty
to resolve it through an empirical study of Debian 7.5.

The most related empirical study to this work is our previous
work [30], which analyzed license usage and license changes
over 16,221 projects and sought to extract rationale from
commit messages and issue tracker discussions. The results
indicated a lack of documentation of licensing in both sources.
While sharing the same motivation, this work is novel as
it investigates when and why developers choose to license a
project or change licensing (as opposed to the extent to which
these changes occur) and presents rationale from a survey
conducted with actual developers of the projects from our
dataset instead of relying just on the rationale from the issue
tracker discussions or from commit messages.



TABLE II
DATASET STATISTICS FOR THE 16,211 PROJECTS IN THE STUDY.

Feature Total Number
Commits 1,583,708
Files 941,357
Disk Size of All Repositories (Gb) 441
Different Licenses 24

C. Qualitative Studies on Software Licensing

Sing and Phelps [25] studied the reasons behind the adop-
tion of a specific license in a FOSS project. Their results sug-
gest that such a choice is mainly driven by social factors— the
adoption of a license in a new project is based on the licenses
adopted by socially close existing projects (e.g., projects from
the same ecosystem). Their work considered license adoption
from a social networking perspective to see how the “licensor”
may be influenced toward a particular license(s) based on
social proximity. Our work does not investigate latent social
connections between developers or the projects in which they
contributed. Instead, we directly surveyed the developers to
understand their reasoning for adopting a particular license.

Sojer et al. conducted a survey with 869 developers regard-
ing reuse of open source code and the legal implications of
the resulting code [26]. One key finding was that industry and
academic institutions did not prioritize knowledge regarding
licensing and reuse. The authors compared a self-assessment
to a questionnaire on licensing and found a discrepancy
between perceived knowledge and actual understanding of
licensing. Additionally, Sojer et al. conducted a survey of 686
practitioners regarding reuse of FOSS code and found that
licensing of FOSS code was the second largest impedance for
reuse [27]. While the authors point to possible reasons for
this observation, our study specifically aims to understand the
reasons for choosing and changing licenses as well as the types
of problems that practitioners face due to licensing.

III. DESIGN OF THE STUDY

The goal of our study is to investigate when developers
consider licensing issues and the reasons why developers pick
or change licensing in FOSS projects. The context consists
of software projects, i.e., the change history of 16,221 Java
FOSS projects mined from GitHub, and subjects, i.e., 138
practitioners contributing to a subset of the mined projects.

A. Research Questions

We aim at answering the following research questions:
• RQ1 When and why do developers first assert a licensing

to their project? This research question first examines
when developers commit a license to at least one file in
FOSS projects hosted on GitHub (i.e., the project goes
from no licensing to at least one license). We complement
this analysis with questions for developers to understand
the actual rationale behind the empirical observations.

• RQ2 When and why do developers change the licensing
of their project? This research question relies on a similar
analysis as the previous question, but it specifically in-
vestigates licensing changes (i.e., the change from license
A to license B).

• RQ3 What are the problems that developers face with
licensing and what support do they expect from a forge?
This question aims at understanding the problems that
developers experience with licensing to better support
them. Additionally, we are interested in understanding
the expectation that developers may have for support
incorporated by forges.

In order to answer our research questions, we consider
two perspectives: (i) evidence collected by analyzing projects’
change history; and (ii) evidence collected by surveying de-
velopers. Both perspectives are explained in the following.

B. Analysis of the Projects’ Change History

To investigate when developers pick or change licensing, we
mined the entire commit history of 16,221 public Java projects
on GitHub. We first queried GitHub, using the public API [2],
to generate project information for all of the publicly available
projects. We extracted a comprehensive list of 381,161 Java
projects by mining the project information of over twelve
million projects and locally cloned all of the Java repositories,
which consumes a total of 6.3 Tb of storage space. We ran-
domly sampled 16,221 projects due to the computation time of
the underlying infrastructure to analyze the licensing of all the
file revisions at commit-level granularity (1,731,828 commits
that spanned 4,665,611 files). Table II reports statistics about
size attributes of the analyzed dataset and the overall number
of different licenses considered in our study.

We relied upon the MARKOS code analyzer [7] to extract
the licensing throughout each project’s revision history. The
code analyzer incorporates the Ninka license classifier [16]
in order to identify the licensing statements and classify the
license by family and version (when applicable) for each file.
The code analyzer mined the change log of the 16,221 projects
and extracted commit hash, date, author, file, commit message,
change to file (Addition, Modification, or Deletion), license
change (Boolean value), license name and version (reported
as a list, when multiple licenses are detected).

The data extraction step for the 16,221 projects took almost
40 days, and a total of 1,731,828 commits spanning 4,665,611
files were analyzed. In the case of BSD and CMU licenses we
only reported a variant of either case, since Ninka was unable
to identify the particular version. In the case of GPL and
LGPL, it is possible for the license to have an exception that
allows developers to pick future versions of that license and
we annotate the license with a “+” (e.g., GPL-2.0+ signifies
that the terms of GPL-3.0 can also be used).

To identify licensing changes, we followed the same pro-
cedure exploited in our previous work [30]. In particular, we
identify a commit ci as responsible for introducing a license
in a code file F if before ci Ninka did not identify any license
in F , while after ci a license in F is retrieved (i.e., No License
→ Some License transition on F ). Instead, we consider ci as a
licensing change if the license type and/or version detected by
Ninka on F before ci is different than the one detected after
ci (i.e., Some License → Some Other License transitions).



C. Analysis of the Developers’ Survey

To investigate the reasons why developers add/change the
license(s) of their systems, we surveyed the developers who
made licensing changes in the systems to which they con-
tributed. To find potential developers for our survey, we
utilized the results of our quantitative analysis. From the
16,221 projects that we analyzed, we found 1,833 projects
that had experienced either a delayed initial license addition
(i.e., No License → Some License transition happened after
the first project commit) or licensing change (i.e., Some
License → Some Other License) over their change history.
We included both scenarios to understand the rationale behind
both RQ1 and RQ2, which required a change in licensing.
For each of these projects, we used the version control
history to extract the set of all its contributors. From the
1,833 projects with licensing changes, we identified a total of
2,398 valid developers e-mail address, whom we targeted as
potential participants for our study. By valid, we refer filtering
out contributor e-mail addresses matching the following two
patterns — “[user]@locahost.*” or “[user]@none.*”— since
they pointed to clearly invalid domains. We also removed
developers of the Android framework, since these have always
been licensed under the Apache license. The 2,398 developers
were invited via e-mail to fill-in an online survey hosted on
Qualtrics [5] (the survey answers were all anonymous). This
e-mail invitation included (i) a link to the survey, and (ii)
a description of the specific licensing addition/change(s) we
observed in their project’s history. After being contacted, some
developers offered further insights regarding these changes by
directly responding to our email. In total, we emailed 2,398
individuals and received 138 responses to the survey and 15
follow-up emails in which developers volunteered additional
information. Overall, we had a response rate of 5.75% of the
developers we contacted.

The survey consisted of seven questions (Q1-Q7); Q7 was
optional (only 12 participants answered it). Tables III and IV
list the survey questions and the responses of the developers.
Q1 and Q2 were dichotomous questions. These questions
were used to ensure that the respondents were involved in
determining the project’s licensing. If a respondent did not
answer “yes” to Q2, the survey ended for the participant.
Out of 138 participants, 62 responded “no” to the Q2 and
so they were ineligible for the remaining questions (Q3-
Q7). Questions Q3 to Q6 were multiple choice questions
and included the “Other” option. If the respondents chose
“Other”, they could further elaborate using an open-ended
field. Question Q7 was optional and open-ended. We chose
to make it optional, because some developers may not agree
that the forge should be responsible for features supporting
licensing. Out of 138 respondents, 76 developers were eligible
for the entire survey (Q1-Q7) as per their response to Q2, but
only 52 of those individuals completed the survey.

Since questions Q3-Q7 also included open-ended responses,
we relied on a formal grounded-theory [8] coding of the
open-ended responses. Three authors read all the responses

●● ●● ●●● ●●● ●●●● ●● ● ●●● ●● ●●● ●●●● ●● ● ●●●●●● ●● ●●● ●● ●●●● ●●● ● ●●●● ●●● ● ●● ●● ●● ●●●● ●●● ●● ●●● ● ●● ●● ●●● ● ●● ●● ●●● ●● ●●● ●●● ● ●●●● ● ●● ●●● ●●● ●●● ●● ●● ● ●●●● ●● ● ●● ●●● ● ● ●●●●●●● ● ●●● ● ●●● ●● ●● ● ●●●●● ● ●●● ●● ●● ●● ●●● ●●● ●● ●● ● ●● ●●●● ●●● ●●●●● ● ● ●●● ●●● ●●● ●●●● ●●● ● ●● ●●● ●●●● ● ● ●●● ● ●● ●● ● ●●● ● ● ●● ●● ●● ●●● ●● ● ●● ● ●●●● ●● ●●●● ●● ●●● ● ●●● ●● ●●● ●●● ●● ●●●●● ●●● ● ●● ● ●● ● ●●● ● ●●● ●●● ●●●●● ●● ●● ●● ●● ●●●●● ●●● ● ●● ●● ●● ●● ● ●● ● ●●●● ● ●● ●● ● ● ●●●●● ●● ●●● ●● ●● ●●● ● ●● ● ●● ● ●●●●● ●●● ●● ●● ● ● ●●● ●●● ●● ●●● ●●● ●● ●● ●●●●● ● ●●●● ● ●●●●● ●● ●● ●● ● ●●●●● ●●● ●● ●● ●● ●● ●● ●● ●●● ●●●● ●●●● ●● ● ● ●● ●● ●●●● ●●●● ●● ● ●● ● ● ●●●● ●● ●●● ● ●●● ●● ●●●●●●●●●●● ● ● ● ●● ● ●●● ●●● ●● ●● ●● ● ●●●●●● ● ● ●● ●●● ● ●● ●● ● ●●●●● ●● ●● ●● ●●● ●● ●● ● ●●●● ●● ●●●●● ● ●● ●●● ●● ●● ●●● ●●● ●● ● ●● ●● ●●●●● ●●● ●● ●● ● ●●●●●●●● ● ●●● ●● ●● ● ●● ● ●●● ●●● ●●●● ●●● ●● ● ●● ●● ●● ● ●●● ● ●●●● ● ● ●●● ●● ● ●●●● ●●●● ● ●●●● ●● ●●●● ● ● ●●● ●●● ●● ● ●● ●●● ●● ● ● ●●●●●●●● ● ●● ● ●● ● ● ●●● ● ●●● ● ●● ●●● ●●● ●● ●● ● ●●● ●●● ●● ●● ● ● ●●● ●● ●●● ●● ●●● ●● ●● ●●● ●● ●● ●●●●● ●● ●● ●●● ●● ● ●● ●● ● ●● ● ●●● ● ●●● ● ●● ●●●●● ● ●● ●●●● ● ● ●●●● ●● ● ● ●●● ● ●● ● ●● ●●●● ●●●● ●●●● ●● ●●● ●● ●● ●●● ● ●● ●● ●● ●●●

1 10 100 1000 10000

Commit Number

Fig. 1. Distribution of commits with license adoptions (log scale).

and categorized each response that represented the developer’s
rationale. The categories from the three authors were analyzed
and merged during a second round to obtain a final taxonomy
of categories. The Tables in Section IV present the final results
of the grounded-theory process.

IV. RESULTS

This section discusses the achieved results answering the
three research questions formulated in Section III-A.

A. When are the licenses added to FOSS projects?

Fig. 1 shows the distribution of the number of commits
in which licenses were introduced into the projects within our
dataset (e.g., a license introduced during the tenth commit will
be represented by the number 10). We present the raw commits
in log scale due to outliers from large commit histories. At
least 25% (first quartile) of the projects were licensed in the
first commit (Fig. 1). The median was also at two commits and
third quartile was at five commits. This observation indicates
that FOSS projects are licensed very early in the change
history with over 75% of the projects having a license by
the fifth commit. Assuming (but this might not be always
the case) that the observed history corresponds to the entire
project history, this result suggests that licensing is important
to developers. It is interesting to note that the mean commit
number for adding a license is 21 and the maximum value is
623 commits. These two values are indicators of a long tail
with a small number of projects that consider licensing late in
the change history.

Summary for RQ1 (Project History Results): we ob-
served that developers consider licensing early in the change
histories of FOSS projects. While there are projects that assert
a license after a larger number of commits, 75% of our dataset
had a license asserted within the first five commits. Thus, the
data suggests that most of the projects adopt licenses among
the very first commit activities.

B. Why are licenses added to FOSS projects?

Table III reports the responses to Question 3 (Q3) of our
survey in which we tried to ascertain the rationale behind the
initial project licensing. 30.8% of developers indicated that the
community influences the initial licensing. One explanation
for the high prevalence of this response is that certain FOSS
communities stipulate and enforce that a particular license
must be used. For example, the Apache Software Foundation
requires that its projects or the code contributed to their
projects are licensed under the Apache-2.0 license. Instead,



the Free Software Foundation promotes the use of the GPL
and LGPL family of licenses.

19.2% of developers chose the license with the goal of
making their project reusable in commercial applications.
These responses also indicate a bias toward more permissive
licenses that facilitate such usage while restrictive licenses can
discourage such usage, since they require that a system is
licensed under the same terms. This finding provides a partial
explanation for the trend toward more permissive licenses we
observed in our previous work [30].

The results of our survey also show that licensing-related
decisions are impacted by inherent developer bias. 15.4% of
developers supplied answers that we categorized as moral-
ethical-beliefs. An example of this category was the response
by one developer indicating, “I always use GPL-3.0 for
philosophical reasons.” Similarly, a different developer echoed
this comment stating “I always licence GPL, moral reasons.”

Satisfying a dependency constraint (i.e., the need to use a
license based on the license of dependencies) was a relevant
reason (9.6% - 7.7% picking the explicit option and 1.9% with
an “Other” response categorized as dependency constraint).
This result is important, since little work has been done to
analyze licensing across software dependencies. This problem
also poses challenges in both identifying all of the necessary
dependencies as well as the license(s) of those dependen-
cies. Some automated build frameworks like Maven [6] or
Gradle [3] attempt to ameliorate this difficulty by listing
dependencies in a file that drives the building process (e.g.,
Project Object Model file in Maven). However, licensing is
not a required field in those files.

The remaining answers to this question described situations
in which the license was inherited by the initial founders
and persisted over time. Also, the companies have policies
to specifically dictate a licensing convention. In the latter
case, the respondent indicated that “company (...) policy is
Apache-2.0” (company name omitted for privacy). It was also
interesting to see that nobody choose a license based on
requests by outsiders.

Lastly, we identified a category in licensing changes that re-
lated to license adoption and not changes. 7.7% of developers
respond to our question on licensing changes that indicated
the license was missing and it was added in a later commit.
For this case, we added (License Addition) to the category
for Q4 in Table III. The developers noted that “Setting the
license was just forgotten in the first place” and “Accidentally
didn’t include explicit licence in initial commit”. These cases
are also important, since it can create inconsistencies within
the system or mislead non-contributors that the project is
unlicensed or licensed under incompatible terms. This result
further reinforces that developers view early license adoption
as important, but the lack of a license may be a mistake.

Summary for RQ1 (Survey Results): the initial licensing
is predominantly influenced by the community to which a
developer is contributing. Subsequently, commercial reuse is
a common factor, which may reinforce the prevalence of
permissive license usage. While reuse is a consideration, non-

●● ●● ●●● ●●●● ●●●● ●●● ●●●●●●●●● ●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●● ●●●●●●● ●●●● ●●●● ●●● ●● ●●●●

5 10 50 500 5000 50000

Commit Number

Fig. 2. Distribution of commits with license changes (log scale).

contributors do not seem to impact the initial licensing choice.
We also found that the inclusion of a particular dependency
can impact the initial licensing of a project.

C. When are licenses changed in FOSS projects?

Fig. 2 shows the distribution of when licenses were changed
in the projects within our dataset (i.e., Some license→Some
Other License). As in the previous section, we present the
raw commit number in which the changes occurred (log scale
due to outliers from large commit histories). Interestingly,
the minimum value was the second commit (i.e., a license
changed right after its addition in the first commit). More
generally, 25% of license changes occur in the first 100
commits. The median value is 559 commits while the mean
is 3,993 commits. The third quartile (2,086 commits), quite
smaller than the mean, suggests a long tail of license changes
occurring late in the projects’ change histories. The maximum
commit number with a license change was commit 56,746.
Numbers at this extreme would cause the larger mean value
compared to the median. Overall, the data suggests that certain
projects change licenses early in the change history; however,
the license changes are much more prevalent in later commits.

Summary for RQ2 (Project History Results): we ob-
served that developers change licensing later in the change
history of the FOSS projects. While there are projects that
change licensing early, our first quartile was 100 commits
and third quartile was 2,086 commits, demonstrating more
substantial development occurred before changing licensing.

D. Why are licenses changed in FOSS projects?

Table III shows the responses to Question 4 (Q4) of our
survey in which we investigated the rationale behind license
changes. Allowing reuse in commercial software was the most
common reason behind licensing changes (32.7%). This option
was also the second most prevalent for choosing the initial
license (19.2% of developers). Combining these two results,
it is clear that the current license of a project is heavily
affected by its need to be reused commercially. As previously
stated, this result qualitatively supports the observation from
our previous work [30], where we observed that projects tend
to migrate toward less-restrictive licenses.

7.7% of developers changed licensing due to community
influence. This response was a more significant factor for the
initial choice in licensing, but it further emphasizes the impact
that a community can assert. One developer commented,
“community influence (contributing to Apache’s projects)”.
Similarly, two developers commented about the influence the



Eclipse Foundation exercised over license changes in their
projects. Interestingly, one developer reported: “I wanted to
use the most common one for OSS Java projects”. This
response suggests that a particular license may pick up more
momentum and spread for a particular language. Interestingly,
we observed that 7.7% of the developers were willing to
change the licensing due to requests from non-contributors.
The fact that this response was more prevalent for changing
licensing than choosing the initial license may be influenced
by outsiders waiting until a project is stable or mature before
inquiring about particular licensing.

We also observed that both the change in license(s) of a
dependency or using a new dependency prompted developers
to change licenses (5.8% of developers for both cases). This
observation further demonstrates the difficulty or impact that
dependency can have with respect to licensing. It also suggests
that there could be inconsistencies between the licensing of a
system and its dependencies.

Moral-ethical-beliefs are also a reason for 5.8% of de-
velopers. Interestingly, we observed both the beliefs of de-
velopers and beliefs of a philantropist, who is funding the
project’s development. While one developer acknowledged,
“I simply wanted to pick a ’free’ license and chose Apache
without much consideration,” another developer indicated that
“Philanthropic funders encouraged us to move to GPL3, as
well as our own internal reflection on this as we came to
understand GPL3 better.” In the former example, it is notable
that the developer’s concern was not the impact of the Apache
license in particular, but primary motivator was any free license
(i.e., FOSS license). The latter indicates that the individuals
funding the projects can influence the licensing. While the
developers were not coerced to change to the GPL-3.0, they
were still influenced by the beliefs of the individuals funding
the system’s change history.

Summary for RQ2 (Survey Results): developers seem
to change licensing to support reuse in commercial systems.
While community influence still impacts changing licensing,
it appears to be a less significant factor with respect to
license adoption. Based on our survey results, the reasons
behind changing licensing are more diverse and more evenly
distributed among the topics than we observed in the selection
of the initial license.

E. What are the problems that developers face with licensing
and what support do they expect from a forge?

Table IV shows the results for Questions 5-7 (Q5-Q7) that
investigate both the problems that developers experience with
licensing and expected licensing support from the forge.

In Q5, we investigated the problems related to licensing
that developers have experienced. 23 out of 52 developers
(44.2%), explicitly mentioned “No problem” in the “Other”
field. For those who recognized problems, the main reason
was the inability of others to use the project due to its license
(17.3%). Since developers consider this a problem, it suggests
that developers are interested in allowing broad access to
their work. However, they may be constrained due to desired

protections (e.g., patent protect from Apache-2.0 or GPL-3.0)
or external factors, like the licensing of dependencies (external
since the developers cannot change those licenses).

Additionally, developers indicated that choosing the correct
license was difficult for them (13.5%). The litigious nature of
these licenses can lead to misinterpretations by developers. For
example, the Apache Foundation states on their webpage that
“The Apache Software Foundation is still trying to determine
if this version of the Apache License is compatible with
the GPL” [1]. Additionally, 5.8% developers indicated that
they experienced misunderstandings with respect to license
compatibility. To make matters worse, 9.6% of the developers
experienced compatibility problems with dependencies. There-
fore, developers not only faced difficulty while determining the
appropriate license, but they also misunderstood the compati-
bility among licenses and experienced incompatibility between
their project’s licensing and a desired dependency’s licensing.

Developers also experienced difficulties with their users
misinterpreting or not understanding the terms of their license.
One developer stated that “Users do not read/understand the
license, even though it is a most simple one.” This result
poses two possible problems — either users (i.e., developers
looking to reuse the code) ignore the actual licensing text or
they struggle to interpret even the easier licenses. The former
would demonstrate a bigger problem in that users do not
take licensing seriously, while the latter demonstrates that the
difficulty in understanding licensing is more extensive than
just very litigious licenses. Reinforcing the second scenario,
another developer noted the problem was “Just the usual
challenges of talking with potential commercial partners who
do not understand the GPL at all”. By phrasing the comment
with the usual challenges, it suggests that the developer
had repeated experience with partners unable to understand
licensing. This is not necessarily an isolated case, but rather
potentially widespread experience shared by other developers.

Regarding the support provided by the forge, in this case
GitHub, we investigated the impact of a feature added to
help document the license of a project—see Q6 in Table
IV. This feature was added as a response to the criticism
from some practitioners [24]. While 36.5% of developers
did not have access to the feature at the time they created
their project, the interesting result is that more than half
(51.9%) of developers were not influenced by the availability
of such a tool. Additionally, the “Other” responses indicated
that the feature would not have had an impact on their choice
(3.8%) and a single developer specifically chose not to license
her project, leading to a combined 58% of developers that
were unaffected by this feature. Thus, our data suggests that
this GitHub feature did not affect/influence developers when
licensing (or not) software hosted in GitHub.

Finally, we received 11 responses to our optional question
(Q7) concerning whether forges should provide features that
assist the licensing of their software. Since GitHub has been
criticized by practitioners [24] for a lack of licensing con-
sideration, this question seeks to understand the features that
practitioners expect from a forge to this end. 10 out of 11



TABLE III
SURVEY RESULTS. QUESTIONS 1 TO 4: DEVELOPER INVOLVEMENT AND

RATIONALE FOR CHOOSING OR CHANGING LICENSES.
Question/Answer #D %
Q1. Were you involved in changes occur-
ring to parts of the system that underwent
license changes?

138

Yes 75 54.3%
No 63 45.7%
Q2. Were you involved in determining the
license or change in license of the project
or some of its files?

138

Yes 76 53.7%
No 62 46.3%
Q3. How did you determine/pick the initial
license for your project or files in your
project?

52

Dependency constraint 4 7.7%
Community influence (e.g., contributing to
Apache projects) 16 30.8%

Requests by non-contributors to reuse your
code 0 0%

Interest of reuse for commercial purposes 10 19.2%
Other (please specify) 22 42.3%

— Closed-source 1 1.9%
— Company-policy 2 3.8%
— Dependency-constraint 1 1.9%
— Inherit-license 3 5.8%
— Moral-ethical-belief 8 15.4%
— Project-Specific 2 3.8%
— Social-trend 2 3.8%
— None 3 5.8%

Q4. What motivated or caused the change
in license? 52

License of dependencies changed 3 5.8%
Using a new library imposing specific licens-
ing constraints 3 5.8%

Allow reuse in commercial software 17 32.7%
Requests by non-contributors to reuse your
code 4 7.7%

Other (please specify) 25 48.1%
— Change-to-license-text 2 3.8%
— Community-influence 4 7.7%
— Fix-incorrect-licenses 1 1.9%
— Improve-clarity 1 1.9%
— Missing-license (License Adoption) 4 7.7%
— Moral-Ethical-belief 3 5.8%
— More-permissive-license 1 1.9%
— New-license-version 2 3.8%
— Personal-Preference/Project-specific 1 1.9%
— Private-to-public-project 1 1.9%
— Promote-Reuse 1 1.9%
— Unclear 1 1.9%
— None 3 5.8%

participants answered ”None”. Of those 10 developers, only
one explained that a third party tool should handle license
compatibility analysis. The respondent indicated that the ideal
tool would utilize the various forges and build frameworks
to be a dependency graph of license compatibility stating the
following:

“This is the job of a 3rd party tool IMO since neither

TABLE IV
SURVEY RESULTS. QUESTIONS 5 TO 7: PROBLEMS WITH LICENSING AND

EXPECTED SUPPORT FROM A FORGE.
Question/Answer #D %
Q5. What problems (if any) have you expe-
rienced due to license selection in terms of
code reuse?

52

My license was not compatible with desired
dependencies 5 9.6%

Others were unable to use my project unless I
re-licensed it 9 17.3%

A dependency changed licenses ad was no
longer compatible 1 1.9%

There was a misunderstanding of compatibility
between licensing terms of two licenses 3 5.8%

Choosing the correct license was diffi-
cult/confusing 7 13.5%

Other (please specify) 27 52.9%
— Code-unavailability 1 1.9%
— Lack-of-undersanding-by-Users 2 3.8%
— Unique-New-License 1 1.9%
— No problems 23 44.2%

Q6. Did GitHub’s mechanism for licens-
ing impact your decision on licensing your
project?

52

Yes, it caused me to license my project 3 5.8%
No, I already planned on licensing 27 51.9%
No, I did not want to license at project creation 1 1.9%
Such a mechanism was not yet available when
I created my project 19 36.5%

Other (please specify) 2 3.8%
— No impact 2 3.8%

Q7. What kind of support would you expect
from the forge/GitHub to help you man-
aging licenses and licensing compatibility
issues in your software?

11

None 10 90.9%
License Checker and License Selection Wizard 1 9.1%

github nor forge do or should own all open source deps. A
3rd party tool ideally would know about github, bitbucket,
etc + poms and pom license fields, etc and form a compre-
hensive dep-graph license compat view given a node.”

Another developer noted, “None. From our perspective it really
isn’t that hard to put copyright and licence notices in our
source files.” This comment is interesting since it conflicts
with results from Q4, where developers indicated that licenses
were sometimes missing or an incorrect license was used.

The only developer wishing support from the forge indicated
a desire for a license compatibility checker and a license
selection wizard. This developer commented the desire for two
particular features stating the following:

“1) License compatibility checker - verify the license of
your project with the license of included support software
(gems, libraries, includes) and alert user to potential con-
flicts. This could also be used for the use case that you want
to adopt a piece of software to add to an existing project
- is it compatible? 2) License selection wizard - when you
begin a project, the wizard can ask you a series of questions
(do you want to allow commercial use, do you require mods



to be licensed the same as original, etc) and then suggest
a license for the project.”

While only one developer wanted support from the forge, this
single developer’s comments seem to address many of the
problems and difficulty with respect to licensing for which
we found evidence in Q6 of the survey.

Summary for RQ3 (Survey Results): although 44.2% of
the developers surveyed indicated that they have not expe-
rienced problems with licensing, the remaining respondents
provided a diverse set of answers. They primarily were re-
lated to license incompatibility or difficulty understanding the
licensing. Lastly, the survey indicated that GitHub’s mecha-
nism to encourage or aid in licensing was not necessary or
unavailable to the surveyed developers. We also found that
most developers did not expect support from the forge, but
one did indicate the desire for a third-party tool. However,
one developer did express interest in forge’s support, and the
comments aligned with our results regarding problems that
developers actually faced.

V. LESSONS AND IMPLICATIONS

Intrinsic beliefs of the developers. The first important
observation is that the participants have a bias toward FOSS
licensing from an ethical perspective. 52% of the respondents
indicated (Q6) that they planned on licensing the project
prior to creation; only 6% of the respondents (Q6) were
influenced to license their project due to GitHub’s licensing
feature (i.e., a combo list with license names). Similarly, the
“Other” responses regarding the reason for a project’s initial
licensing (Q3) indicated a sense of obligation. For example,
one developer said: “It was the only moral and ethical choice”.

Delayed licensing. Developers do not necessarily have to
decide to open source from the beginning and delay doing
it. While we empirically observed early license adoption in
general, one developer wrote in an email that they waited
to choose a license: “this project just didn’t have a license
on day 1 and it was added at first release.” Similarly, one
developer responded to the survey that licensing changed
due to “change private to public project”. This observation
suggests that licensing is still important to these developers,
but it may not be considered relevant until the project reaches
a certain level of maturity. Thus, there is the need for tools to
add and verify licensing information of a system at any given
point in time.

Community and organizational influence. Our results
indicate that communities, and in particular FOSS foundations
(such as the Apache Software, Eclipse, and the Free Software
foundations) exert powerful influence on the choice of a
license by its developers. About 31% of the participants
responded that initial licensing is done by following commu-
nity’s specific licensing guidelines. Improving or developing
on top of existing software from a foundation mostly requires
using the same license aligning with foundation’s philosophy.

License misunderstanding. The survey stresses the need
for aid in explaining licenses and the implications of their

use. About 20% of the respondents highlighted that licens-
ing is confusing and/or hard to understand (Q5): 13.5% of
respondents indicated that developers—both the authors and
the users—find licensing confusing or difficult (Q5), and 6%
of developers also noted that there were misunderstandings
between license compatibility. Additionally, one “Other” re-
spondent stated, “Users do not read/understand the license,
even though it is a most simple one,” which suggests that
developers experienced misunderstanding whether on their
own or by users.

Reuse for commercial distribution. The results regarding
licensing changes indicated that commercial usage of code
is a concern in the open source community. We found that
practitioners used permissive licenses to facilitate commercial
distributions, in some cases they change to a more permissive
license for this purpose.

Dependency influence. A software system must choose
its dependencies so to avoid conflicts due to incompati-
bilities between the system’s license(s) and the depending
components’ license(s). Similarly, others will choose to use
a particular software system based on its license. Thus, the
change of a license in a system has the potential of creating
a chain reaction: those that use it might need to change their
license, or drop it as a dependency; for the system changing
license, the potential pool of reusable components will change
accordingly—it might need to drop a different dependency,
or it might be able to add a dependency with a previously
incompatible license.

Forge’s support. Most of our respondents do not expect any
licensing support from the forge. It is likely that the individuals
that benefit the most from licensing support in the forge are
those who are looking to reuse software. This is supported by
our results that indicate that the license(s) of dependencies is
an important consideration, since it might impact the ability to
reuse the dependency or require a change of the license(s) of
the software that uses it. Thus, compliance-oriented features
may aid developers to ensure they can legally reuse software.

Finally, our results demonstrate that external factors like
community, license prevalence, and licenses of dependencies
have an important impact on licensing.

A feature provided by the forge to support domain sug-
gested licensing could benefit practitioners. Since developers
indicated that licensing is difficult, a more informative feature
could help practitioners determine the appropriate licensing.
For instance, the current licensing support feature provided by
GitHub feature is not particularly informative for developers.
Basically, it provides a link to choosealicense.com, but does
not provide further guidance to the developer. Also, it does not
cover issues related to compatibilities at all. Moreover, appli-
cations within the same domain may be utilizing some of the
same dependencies or require similar grants for redistribution
and reuse. To better support developers, a forge could include
a domain analysis feature to detect similar applications [22]
and suggest to the developer/maintainer the license used by
similar systems (if no other criteria has been considered, such
as community or dependencies).



VI. THREATS TO VALIDITY

Threats to construct validity relate to the relationship be-
tween theory and observation, and can be mainly due to
imprecision extracting licensing and results from the developer
survey. In order to identify the licenses, we relied on Ninka
[16], which has been empirically evaluated indicating a pre-
cision of 95%, when it is able to identify the license (85% of
the time in the same study showing the precision). In order to
classify the free responses, we conducted a formal Grounded
Theory analysis with two-author agreement. In particular, all
of the responses were read and categorized by three authors
and the agreement of two of them was considered necessary.
Another threat concerns the fact that, possibly, GitHub could
have mirrored only a fraction of the projects’ change history;
hence, it is possible that the first commits in GitHub may not
correspond to the first commits in the projects’ history. Finally,
the response rate of our study is 5.75%, below the response
rate often achieved in survey studies [18], i.e. 10%. However,
explicitly targeting original developers is usually challenging
because many of them may not be active, the email addresses
are invalid, or even impossible to contact because they are no
longer using the email addresses we collected.

Threats to internal validity relate to internal, confounding
factors that would bias the results of our study. In analyzing
both license introduction and licensing changes, we considered
the commit in which we observed the phenomena as an
instance to ensure we did not introduce duplicates. We only
excluded developers of projects from the Android framework
since the project has always been Apache licensed. Therefore,
we did not have a bias while selecting developers. To address
lack of coverage of our original options in our survey, we
added a free form option “Other” to each question. In addition,
we only presented the full survey to developers that indicated
that they were involved in the licensing decision(s). Another
possible threat to internal validity concerns the fact that,
possibly, the 138 respondents decided to participate to the
survey because they had greater interest in licensing problems
than others. However, results shown in Section IV suggest that
this is not the case, e.g., respondents comprise people who are
directly involved in the licensing, but they did not necessarily
experience any licensing problems.

Threats to external validity relate to the ability to generalize
the results from the study, and we do not assert that these
observations are representative of the FOSS community. While
we randomly sampled the projects from GitHub, we only
did it for Java projects. Thus, other languages and forges
may demonstrate different behavior as well as the develop-
ers of those projects may have different beliefs. However,
GitHub is the most popular forge with a large number of
public repositories. A larger evaluation on multiple forges
and projects in other languages is necessary to understand
when licenses are adopted and changed in the general case.
Additionally, we surveyed actual developers of these projects.
While we do not claim that the rationale is complete, the
conclusions represent explicit feedback as opposed to inferred

understanding. Therefore, the rationale is a definitive subset.
We do not claim that these results apply in the context of
closed source systems, since we required source code to
identify licensing.

Finally, to limit this threat to external validity, we examined
the diversity of our data set using the metrics proposed by
Nagappan et al. [23]. To understand the diversity, we matched
the projects in our dataset against the projects mined by
Boa [11], finding 1,556 project names that matched between
the two datasets. We used these 1,556 projects to calculate
our diversity score across six dimensions. The results were
0.45 for programming language, 0.99 for developers, 1.00 for
project age, 0.99 for number of committers, 0.96 for number of
revisions, 0.99 for number of program languages, suggesting
that our dataset is diverse excluding the programming language
score (impacted by selecting Java projects). Overall, our score
was 0.35, which suggests that we cover over a third of FOSS
projects with 9.5% of our dataset.

VII. CONCLUSIONS

We investigated the reasons on when and why developers
adopt and change licenses during evolution of FOSS Java
projects on GitHub. To this aim, we conducted a survey
with developers that contributed changes to the projects that
included licensing changes. We observed that developers typ-
ically adopt a license within the first few commits, suggest-
ing that developers consider licensing as an important task.
Similarly, we observe that most licensing changes appear
after a non-negligible period of development as visible from
the observed history. We then explored the reasons for the
initial licensing, license changes, and problems experienced
by developers with respect to software licensing. We ob-
served that developers view licensing as an important yet
non-trivial feature for their projects. License implications or
compatibility are not always clear and so they can lead to
changes. Additionally, there are external factors influencing
the projects’ licensing, such as community, purpose of usage
(i.e., commercial systems), and use of third-party libraries.
While developers did not strongly indicate an expectation for
licensing support by the forge, it is evident that third-party
tools or features within the forge would aid developers in
helping to deal with licensing decisions and changes.

ACKNOWLEDGEMENTS

We would like to thank all the open source developers
who took time to participate in our survey. Specifically, we
would like to acknowledge developers who provided in-depths
answers and responded to follow-up questions. This work
is supported in part by NSF CAREER CCF-1253837 grant.
Massimiliano Di Penta is partially supported by the Markos
project, funded by the European Commission under Contract
Number FP7-317743. Any opinions, findings, and conclusions
expressed herein are the authors’ and do not necessarily reflect
those of the sponsors.



REFERENCES

[1] Apache License, Version 2.0 (current) https://www.apache.org/licenses/.
Last accessed: 2015/03/23.

[2] GitHub API. https://developer.github.com/v3/. Last accessed:
2015/01/15.

[3] Gradle.https://gradle.org/.
[4] Open Source Definition http://opensource.org/osd.
[5] Qualtrics http://www.qualtrics.com/.
[6] Apache. Apache maven project. https://maven.apache.org/.
[7] G. Bavota, A. Ciemniewska, I. Chulani, A. De Nigro, M. Di Penta,

D. Galletti, R. Galoppini, T. F. Gordon, P. Kedziora, I. Lener, F. Torelli,
R. Pratola, J. Pukacki, Y. Rebahi, and S. G. Villalonga. The market for
open source: An intelligent virtual open source marketplace. In 2014
Software Evolution Week - IEEE Conference on Software Maintenance,
Reengineering, and Reverse Engineering, CSMR-WCRE 2014, Antwerp,
Belgium, February 3-6, 2014, pages 399–402, 2014.

[8] J. Corbin and A. Strauss. Grounded theory research: Procedures, canons,
and evaluative criteria. Qualitative Sociology, 13(1):3–21, 1990.

[9] M. Di Penta, D. M. Germán, and G. Antoniol. Identifying licensing
of jar archives using a code-search approach. In Proceedings of the
7th International Working Conference on Mining Software Repositories,
MSR 2010 (Co-located with ICSE), Cape Town, South Africa, May 2-3,
2010, Proceedings, pages 151–160, 2010.

[10] M. Di Penta, D. M. Germán, Y. Guéhéneuc, and G. Antoniol. An ex-
ploratory study of the evolution of software licensing. In Proceedings of
the 32nd ACM/IEEE International Conference on Software Engineering
- Volume 1, ICSE 2010, Cape Town, South Africa, 1-8 May 2010, pages
145–154, 2010.

[11] R. Dyer, H. A. Nguyen, H. Rajan, and T. N. Nguyen. Boa: a language
and infrastructure for analyzing ultra-large-scale software repositories.
In 35th International Conference on Software Engineering, ICSE ’13,
San Francisco, CA, USA, May 18-26, 2013, pages 422–431, 2013.

[12] D. M. Germán and M. Di Penta. A method for open source license
compliance of java applications. IEEE Software, 29(3):58–63, 2012.

[13] D. M. Germán, M. Di Penta, and J. Davies. Understanding and
auditing the licensing of open source software distributions. In The
18th IEEE International Conference on Program Comprehension, ICPC
2010, Braga, Minho, Portugal, June 30-July 2, 2010, pages 84–93, 2010.

[14] D. M. Germán, M. Di Penta, Y. Guéhéneuc, and G. Antoniol. Code
siblings: Technical and legal implications of copying code between ap-
plications. In Proceedings of the 6th International Working Conference
on Mining Software Repositories, MSR 2009 (Co-located with ICSE),
Vancouver, BC, Canada, May 16-17, 2009, Proceedings, pages 81–90,
2009.

[15] D. M. Germán and A. E. Hassan. License integration patterns: Ad-
dressing license mismatches in component-based development. In 31st
International Conference on Software Engineering, ICSE 2009, May 16-
24, 2009, Vancouver, Canada, Proceedings, pages 188–198, 2009.

[16] D. M. Germán, Y. Manabe, and K. Inoue. A sentence-matching
method for automatic license identification of source code files. In ASE
2010, 25th IEEE/ACM International Conference on Automated Software
Engineering, Antwerp, Belgium, September 20-24, 2010, pages 437–446,
2010.

[17] R. Gobeille. The FOSSology project. In Proceedings of the 2008
International Working Conference on Mining Software Repositories,
MSR 2008 (Co-located with ICSE), Leipzig, Germany, May 10-11, 2008,
Proceedings, pages 47–50, 2008.

[18] R. M. Groves. Survey Methodology, 2nd edition. Wiley, 2009.
[19] J. Hartsock. jquery, jquery ui, and dual licensed plugins (dual licens-

ing) [closed] http://stackoverflow.com/questions/2758409/jquery-jquery-
ui-and-dual-licensed-plugins-dual-licensing. Last accessed: 2015/02/15.

[20] Y. Manabe, Y. Hayase, and K. Inoue. Evolutional analysis of licenses
in FOSS. In Proceedings of the Joint ERCIM Workshop on Software
Evolution (EVOL) and International Workshop on Principles of Software
Evolution (IWPSE), Antwerp, Belgium, September 20-21, 2010, pages
83–87. ACM, 2010.

[21] Y. Manabe, Y. Hayase, and K. Inoue. Evolutional analysis of licenses
in FOSS. In Proceedings of the Joint ERCIM Workshop on Software
Evolution (EVOL) and International Workshop on Principles of Software
Evolution (IWPSE), Antwerp, Belgium, September 20-21, 2010., pages
83–87, 2010.

[22] C. McMillan, M. Grechanik, and D. Poshyvanyk. Detecting similar soft-
ware applications. In Proceedings of the 34th International Conference
on Software Engineering, ICSE ’12, pages 364–374, Piscataway, NJ,
USA, 2012. IEEE Press.

[23] M. Nagappan, T. Zimmermann, and C. Bird. Diversity in software
engineering research. In Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on the
Foundations of Software Engineering, ESEC/FSE’13, Saint Petersburg,
Russian Federation, August 18-26, 2013, pages 466–476, 2013.

[24] S. Phipps. Github needs to take open source seriously
http://www.infoworld.com/d/open-source-software/github-needs-
take-open-source-seriously-208046.

[25] P. Sing and C. Phelps. Networks, social influence, and the choice among
competing innovations: Insights from open source software licenses.
Information Systems Research, 24(3):539–560, 2009.

[26] M. Sojer and J. Henkel. Code reuse in open source software develop-
ment: Quantitative evidence, drivers, and impediments. J. AIS, 11(12),
2010.

[27] M. Sojer and J. Henkel. Code reuse in open source software develop-
ment: Quantitative evidence, drivers, and impediments. Journal of the
Association for Information Systems, 11(12):868–901, 2010.

[28] J. T. Confusion about dual license (mit/gpl) javascript for use
on my website http://programmers.stackexchange.com/questions/
139663/confusion-about-dual-license-mit-gpl-javascript-for-use-on-
my-website. Last accessed: 2015/02/15.

[29] T. Tuunanen, J. Koskinen, and T. Kärkkäinen. Automated software
license analysis. Autom. Softw. Eng., 16(3-4):455–490, 2009.

[30] C. Vendome, M. Linares-Vásquez, G. Bavota, M. Di Penta, D. M.
Germán, and D. Poshyvanyk. License usage and changes: A large-
scale study of Java projects on GitHub. In The 23rd IEEE International
Conference on Program Comprehension, ICPC 2015, Florence, Italy,
May 18-19, 2015. IEEE, 2015.

[31] Y. Wu, Y. Manabe, T. Kanda, D. M. Germán, and K. Inoue. A method
to detect license inconsistencies in large-scale open source projects. In
The 12th Working Conference on Mining Software Repositories MSR
2015, Florence, Italy, May 16-17, 2015. IEEE, 2015.


