
How Do Developers Document
Database Usages in Source Code?

Mario Linares-Vásquez, Boyang Li, Christopher Vendome, and Denys Poshyvanyk
The College of William and Mary

Email: {mlinarev, boyang, cvendome, denys}@cs.wm.edu

Abstract—Database-centric applications (DCAs) usually con-
tain a large number of tables, attributes, and constraints de-
scribing the underlying data model. Understanding how database
tables and attributes are used in the source code along with the
constraints related to these usages is an important component
of DCA maintenance. However, documenting database-related
operations and their constraints in the source code is neither
easy nor common in practice.

In this paper, we present a two-fold empirical study aimed
at identifying how developers document database usages at
source code method level. In particular, (i) we surveyed open
source developers to understand their practices on documenting
database usages in source code, and (ii) we mined a large set of
open source projects to measure to what extent database-related
methods are commented and if these comments are updated
during evolution. Although 58% of the developers claimed to
find value in method comments describing database usages, our
findings suggest that 77% of 33K+ methods in 3.1K+ open-
source Java projects with database accesses were completely
undocumented.

I. INTRODUCTION

Database-centric applications (DCAs) are software sys-
tems that rely on databases to persist records using database
objects such as tables, columns, constraints, among the others.
These database objects represent the underlying application
model, including business rules and terms. Also, developers
can create queries and views as a mechanism to traverse
or search over the persisted data by following the seman-
tics defined by the database objects. DCA architectures are
commonly used for different types of systems ranging from
large enterprise systems to small mobile applications. It is
not uncommon for many modern DCAs to contain databases
comprised of thousands of tables and attributes [1–3].

The source code and database schemas of DCAs are con-
stantly evolving, oftentimes asynchronously [4]. This makes it
particularly challenging for developers who need to understand
both how the database is used in the source code and how the
model is described by a schema [5].

In addition, database administrators who are in charge
of database schemas may not necessarily be in charge of
related source code changes [5] or be able to effectively
communicate to developers the modifications to the database
schemas. Therefore, complete and up-to-date documentation of
the database, the schema, and any constraints is an important
artifact to support software evolution. Some existing artifacts
designed to capture database schemas are data dictionaries
describing all the database objects in a given schema or
diagrams (conceptual and physical) depicting tables, attributes,

and their relationships. However, navigating and understanding
such artifacts can be tedious and time consuming tasks, in
particular for large databases.

Source code comments are another source of documen-
tation that can help developers understand nuances of the
data model and database usages in the source code. However,
recent studies on co-evolution of comments and code showed
that the comments are rarely maintained or updated, when
the respective source code is changed [6, 7]. Another study
by Kajko-Mattsson showed that none of the organizations
for eighteen enterprise systems have fully matched all their
documentation requirements [8]. To understand if and how
database-related statements are commented in source code,
we mined Java applications in GitHub that use JDBC for
the data access layer, and we found that 77% of 33K+
source code methods do not have header comments; in the
case of existing comments, they rarely got updated when
related source code was modified. To complement the mining-
based analysis, we conducted a survey with 147 open-source
developers (Section III). As it turns out, developers rarely write
comments detailing database schema constraints (e.g., unique
values, non-null keys, varchar lengths) to which developers
should adhere in the source code nor document changes in
source code dealing with databases. However, despite the
preference of developers for using database documentation
or schemas when understanding data models, 65.99% of the
surveyed developers consider that tracing schema constraints
along call chains in source code is not a “very easy” nor “easy”
task. Therefore, there is a clear opportunity for researchers to
propose approaches that support automated documentation of
source code involving database operations.

To the best of our knowledge, no previous work has
been done to understand database documentation practices at
source code level. Therefore, this paper has the following
noteworthy contributions: (i) results from a survey with open
source developers to understand their practices on documenting
database usages in source code; (ii) a mining-based analysis
of a large set of open source projects to measure to what
extent database-related methods are commented and if these
comments are updated during evolution.

II. STATE-OF-THE-ART: RELATED WORK

Despite recent studies showing that there is a strong
evolutionary coupling between database schema and source
code [4, 9–11], as of today, no approach has been proposed
to automatically document/comment database usages in source
code. Some approaches have been proposed to extract infor-
mation directly from the schema, but without considering the



source code [3, 12–15]. There is also some previous work for
automated comment generation of software artifacts [16–28];
however, none of the existing approaches focus on generating
database-related documentation for supporting evolution and
maintenance of source code.

A. Studies on Co-evolution of Schema and Code

Maule et al. [11] use program slicing and dataflow-based
analysis to identify the impact of database schema changes.
Qiu et al. [4] conducted an empirical study into co-evolution
between database schemas and source code, and the authors
demonstrated that database schemas frequently evolve with
many different types of changes at play. Sjøberg [10] presents
a technique for measuring the changes of database schemas and
performed a study on health management systems over several
years, where additions and deletions are found to be the most
frequent operations.

B. Extracting Database Information

Several studies focus on extracting database-related in-
formation [12, 13]. The approach proposed by Petit et al.
first extracts the database table names and attributes from the
database schema [12]. Then, the approach builds semantic
relations between the entities by investigating set operations
and join operations. Alhajj et al. presented an algorithm to
identify candidate and foreign keys of all relations from an
existing legacy database [14].

Another group of studies focused on analyzing data in
the database and extracting associative constraints [3, 15].
The associative rule mining problem was first introduced by
Agrawal et al. [3], where the associative rule mining algorithm
is able to generate a set of implications A → B based on
the given relational table. Au et al. [15] applied a fuzzy
association rule mining technique to a bank database system
and identified some hidden patterns in the data. Li et al. [29]
use association rule mining technique to correct the semantic
errors in generated data. Overall, the associative rule mining
algorithms rely on existent data records.

C. On Documenting Software Artifacts

Buse and Weimer [16] present an approach for generating
human-readable documentation of exceptions in Java. More
specifically, they use a method call graph and symbolic ex-
ecution techniques to extract the conditions of exceptions.
Then, they use a predefined template to generate natural
language comments. Sridhara et al. present an approach for
automatically generating summary comments for Java methods
[17]. The authors demonstrate how to identify different kinds
of important lines of code based on various characteristics
of the code. Once these important lines are identified, the
technique converts them into natural language phrases within
their method bodies. Moreno et al. later extended the scope
of the comment generation to class level granularity [18, 19].
Their description is based on superclass, stereotypes of the
class, and behaviors of blocks. McBurney and McMillan [28]
uses contextual information (i.e., most important method in
the context of a target method) to generate method summaries
that include natural language descriptions of how to use the
method and the purpose of the method as a part of a codebase.

Differently from the previous work, a number of papers
focused on summarizing differences between program versions
[20–27]. Linares-Vásquez et al. implemented a tool, Change-
Scribe, for automatically generating commit messages [20, 21].
They extracted changes between two adjacent versions of a
project and identified involved change types in addition to per-
forming commit level stereotype analysis. Moreno et al. [27]
introduced an approach, ARENA, for automatic generation of
release notes of Java systems. Jackson and Ladd [24] present
a tool named SematicDiff, which uses a program analysis
technique to summarize the semantic differences between two
versions of a project. Canfora et al. [25] present Ldiff to find
line-based differences between two versions. More specifically,
Ldiff is able to track lines moved away from the original
position by comparing all combinations of diff fragments.
Buse and Weimer [26] present an approach for generating
human readable documentation for program differences based
on symbolic execution.

III. STATE-OF-THE-PRACTICE: AN EMPIRICAL STUDY
AND A SURVEY

In order to understand developer practices regarding doc-
umenting database usages in source code, we designed an
empirical study composed of (i) an online survey with con-
tributors of open source Java projects at GitHub and (ii) a
mining-based analysis of method comments in these projects.
In particular, the goal of this study is to understand how
developers document or comment methods in source code that
invoke database queries or statements. As for the context, we
analyzed 3,113 open source Java projects at GitHub (with
JDBC API calls executing SQL queries/statements) and the
complete change history of 264 of those projects; we also
surveyed 147 developers contributing to these projects.

A. Research Questions:

Commenting database related operations and schema con-
straints in source code is not a common practice, because
comments in source code are mostly promoted as a way to
describe the purpose of a code entity (e.g., class, method).
Also, there is the assumption of the existence of artifacts cov-
ering database documentation (i.e., external documentation).
However, this is not always the case, because (i) external
documentation can be outdated, and (ii) understanding large
database schemas is a time consuming task. Also despite of
the existence of database documentation, it is possible that
some database models are more clear for developers when
the database objects are described in the context of features
implemented in the source code.

One hypothesis that we started to explore in this paper is
that inferring database schema constraints from the source code
is not an easy task, and less information about the database
can be inferred from the source code methods at higher levels
of the call-chains. Therefore, the source code methods that are
closer to the user interaction (i.e., the GUI layer) are closer to
high-level actions and decoupled from the internal details about
the database usages and schema constraints. As an initial effort
to explore our hypothesis, in this paper we aimed at answering
the following research questions:

RQ1 Do developers comment methods in source code that
locally execute SQL queries and statements?



RQ2 Do developers update comments of database-related
methods during the evolution of a system?

RQ3 How difficult is it for developers to understand propa-
gated schema constraints along call-chains?

RQ1 examines the extent that methods in which SQL
queries/statements occur are commented and developers’ mo-
tivation for commenting (or not) the methods. We consider
both responses by developers and a mining-based analysis of
source code. RQ2 investigates whether comments in headers of
methods related to database accesses are likely to be outdated
or are modified prior to new releases of the DCA. In RQ2,
similarly to RQ1, we compare the responses from developers
to an analysis of the source code at release granularity. While
the co-evolution of comments and code have been studied
before [6, 7], our study is the first one to investigate co-
evolution of database related source code and comments. RQ3

investigates whether tracing schema constraints in source code
methods that are involved in database-related call-chains is a
difficult task.

B. Data Collection

In order to answer our research questions, we identified a
list of 381,161 Java projects on GitHub. We used GitHub’s
public API [30] to extract all Java projects and locally clone
them. We then applied a keyword search to all of the files in
each repository with the .java extension. In order to identify the
projects using SQL queries, we used the following keywords
import java.sql, jdbc:mysql, or DriverManager.getConnection.
This resulted in 18,828 Java projects using JDBC. We further
refined this list by removing projects that were a fork and did
not have at least one star or watcher (this filtering aims to avoid
projects that are duplicates or abandoned projects). In the end,
we had 3,113 projects in our dataset. We extracted the devel-
opers of each project and filtered their emails down to 12,887
by removing emails containing @(none) and @localhost as
well as using a regular expression to enforce proper email for-
matting (ˆ[a-zA-Z0-9 .+-]+@[a-zA-Z0-9-]+.[a-zA-Z0-9-.]+$).
Due to a limitation of the survey platform, we invited 10,000
developers to participate in our survey hosted on Qualtrics [31].

The survey consisted of five questions (Q1 - Q5) to
understand the extent to which developers document database
interactions in source code and their experience with maintain-
ing this documentation. The questions are listed in Table I. In
the table, we define “top-level method callers” as methods in a
public interface that start a call-chain that trigger methods with
SQL queries/statements. Concerning the mapping between the
research questions and the survey questions: Q1 and Q2 relate
to RQ1; Q3 and Q4 relate to RQ2; and Q5 relates to RQ3;

In addition to the survey, for RQ1, we counted the
number of source code methods with header-comments in
the 3,113 projects. We analyzed the latest snapshot of each
project by extracting the project’s abstract syntax tree (AST).
Then, we automatically detected the methods with database
queries/statements to extract the package, class, method name,
number of parameters, and method comments when available.
We focused on JDBC API calls executing SQL queries or
statements. We performed the same analysis at release-level
for 264 of the projects and compared the comments for each
release to understand whether developers update the comments
during the project’s evolution, in part answering RQ2.

TABLE I. DEVELOPER SURVEY QUESTIONS AND RESULTS.

Question/Answer Respondents
Q1. Do you add/write documentation comments to methods in the source code?
(i.e., comments in the header of the method declaration)
Yes 122 82.99%
No 25 17.01%
Q2. Do you write source code comments detailing database schema constraints
(e.g., unique values, non-null keys, varchar lengths) that should be adhered by
the developers in the source code?
Yes 32 21.77%
No 115 78.23%
Q3. How often do you find outdated comments in source code?
Never 1 0.68%
Rarely 28 19.05%
Sometimes 80 54.42%
Fairly Often 35 23.81%
Always 3 2.04%
Q4. When you make changes to database related methods, how often do you
comment the changes (or update existing comment) in the methods, the callers,
and all the methods in the call-chains that include the changed methods?
Never 37 25.17%
Rarely 34 23.13%
Sometimes 45 30.61%
Fairly Often 14 9.52%
Always 17 11.56%
Q5. How difficult is it to trace the schema constraints (e.g., foreign key
violations) from the methods with SQL statements to top-level method callers?
Very Easy 14 9.52%
Easy 36 24.49%
Moderate 66 44.90%
Hard 23 15.65%
Very Hard 8 5.44%

C. Results

RQ1: It is worth noting that for RQ1 we were interested
in answers concerning the general usage of documentation as
a practice instead of the frequency. Therefore, Q1 and Q2 are
dichotomous questions, and the participants had the chance of
complementing the answer with a open field explaining their
rationale. Regarding the results, developers mostly recognize
the importance of commenting source code methods as a
way to increase program comprehension during evolution and
maintenance. For instance, 122 developers answered “Yes” to
Q1 and augmented the response with rationale like:

“Helps explain to others what the method is doing and
how to use it, as well as remind the original developer (me)
what was the intention of the code”

“Comments make it easier to remember what things do.
They are super helpful when returning to old code and
when sharing your code with others. I’ve programmed
without comments in the past and learned the hard way
that comments are, more often then not, indispensable”

From the 17.01% of participants answering “No” to Q1, we
found typical rationale claiming that methods should be self-
documented/self-explanatory.

Despite the high rate of participants recognizing the
practice of commenting source code methods, the answers
for Q2 predominantly indicate that the developers do not
comment database schema constraints with 78.23% of the
respondents answering “No” to Q2. This contrast demonstrates
that database-related information is not likely contained in the
method declarations, because method comments are mostly for
describing the purpose of the method instead of implementa-
tion details, and the documentation of database objects is an
obligation of an external document or the database schema.



Some responses from participants supporting the preference
for external documentation are the following:

“The database schema and documentation takes care of
that. I can always look at the table definition very easily.”

“I use [database-engine] and the constraints can be
checked typing a sql consult or even using a Tool.”

“Although I strongly believe comments are important,
database comments are the gray area. Comments related
to the database schema and its constraints I consider to
be irrelevant to the code using it. The schema, its details,
and any quirks about it should be outlined in a separate
document.”

“The comments should be stored in the database itself -
which is not supported by most databases I know. Writing
in the source code means duplicate effort - need to keep
the source code synchronized with the schema. Also, the
database is sometimes accessed by programs written in
different languages - maintaining the comments up-to-date
in ALL the source codes would be impossible.”

Another prominent reason for not documenting database us-
ages and constraints in method headers is the usage of Java
Annotations in ORM frameworks, which explicitly declare in
the code the schema constraints:

“This can be mostly handled through proper design. If
using an ORM we can specify field lengths in attributes,
that can provide validation as well as documenting if for
developers. ”

“ORM initialization makes it clear what the scheme con-
straints are”

“The schema is already described in ORM code.”

Results from the mining study confirm developers prefer-
ences. In the analyzed source code (i.e., 3,113 projects), we
identified a total of 33,045 methods invoking SQL queries/s-
tatements. Of these methods, 25,450 did not have any com-
ment, while 7,595 methods were commented. These numbers
reinforce the result of Q2 since 23% of the methods with
database access were documented and 21.77% of developers
indicated that they do in fact document such database interac-
tions.

Summary for RQ1. While developers indicated that they
documented methods, we found 77% of methods with
database access were completely undocumented. In fact,
115 out of 147 (78.23%) surveyed developers consider
that documentation of schema constraints should not be
included in the source code and it is a responsibility of the
schema or external documentation.

RQ2: In order to understand whether developers update
comments relating to database queries/statements, we sought to
understand the prevalence of outdated comments (Q3). Com-
bining “Never” and “Rarely,” 19.73% of developers suggest
that comments are regularly updated in the systems that they
implement or utilize. The remaining 80.27% of developers find
outdated comments. Of those 80.27% of developers, 25.85%

(0%,10%]
(10%,20%]
(20%,30%]
(30%,40%]
(40%,50%]
(50%,60%]
(60%,70%]
(70%,80%]
(80%,90%]
(90%,100%]

0 10 20 30 40 50

1
1
3

14
21

4
0

4
2

56

Fig. 1. Frequency of methods grouped by the ratio between the number of
changes to the header comment and number of method changes in methods
invoking SQL queries/statements.

indicated a relative high frequency of encountering outdated
comments. These results suggest that outdated comments are
relatively prevalent (i.e., they are not a rare occurrence), which
confirms that the comments are rarely maintained or updated,
when the respective source code is change [6, 7].

When we consider the prevalence of developers updating
their own comments regarding changes to database-related
methods (Q4), we found 50.3% of respondents rarely or never
updated the comments. Only 21.08% of respondents updated
comments with a relatively high frequency (i.e., fairly often
or always). The remaining 28.62% indicated it was neither
a rare nor frequent occurrence. Therefore, the survey results
suggest that it would fairly probable for such comments to
be outdated. These results reinforce the problems that we
observed with RQ1. Not only are methods with database
queries undocumented, but in the case of commented methods
they are also likely to be outdated.

We also analyzed RQ2 by relying on open source systems.
We mined 264 projects that had explicit releases in GitHub to
identify whether methods invoking database queries/statements
updated their comments. Overall, developers did not update
the comments when the methods were changed. We found
2,662 methods that invoke SQL queries/statements in the 264
projects. Of these 2,662 methods, 618 methods were updated
during the history of these projects and experienced a total
of 1,878 changes. 512 out of the 618 methods that changed
did not have changes to their comments. The 512 method
experienced on average 2.5 changes (min = 1, Q1 = 1,
Q2 = 2, Q3 = 2, max = 199) during their entire history.
The rest of 106 methods (17.15%) were changed 597 times
and experienced on average 5.63 changes (min = 1, Q1 = 2,
Q2 = 3, Q3 = 5.75, max = 198). In those 106 methods,
we found 459 out of 597 method changes also experienced an
update to the method comment. Finally, we computed the ratio
between changes to header comments and methods changes;
a 100% ratio means that every time a method was changed,
the header comments was also changed. Figure 1 depicts the
ratio of changes between header comments and source code
for the 106 methods that experienced changes. For instance,
we only found 66 methods in which more than 50% of the
method changes were accompanied by a change to the header
comment.



Summary for RQ2. While approximately half of the
developers indicated that they “rarely” or “never” up-
date method comments for database-related methods, we
empirically observed that only 17.15% of methods that
were changed in 3,113 open source projects also had their
comments updated at least once between releases. Thus,
we empirically found database-related methods are far less
frequently commented during evolution.

RQ3: Answers to Q5 show a different perspective. Despite
most of the developers thinking database documentation and
schema are enough to understand schema constraints and they
do not document database-related methods, answers to Q5

show that only 34.01% of respondents indicated that it was
“easy” or “very easy” to trace database constraints along
the call-chain to the top-level caller methods. The remaining
65.99% found it at least moderately difficult, with 21.09%
indicating it was “hard” or “very hard.” These responses
indicate that tracing database constraints along call-chains is
a non-trivial task. A call-chain represents the implementation
of a feature in source code. This suggest that, even if external
documentation or database schema is available, maintaining or
implementing a new feature of a system involving database
operations may be a non-trivial task, because of the effort
required to trace schema constraints across the call chains.
However, more empirical validation is required to support this
claim.

Summary for RQ3. Surveyed developers prefer to rely on
external database documentation and two-thirds of devel-
opers indicated tracing constraints along the call-chain was
a “moderate” challenge or a “very hard” challenge. This
opens the discussion about whether external database doc-
umentation is enough for supporting source code evolution
and maintenance tasks.

D. Discussion

This preliminary study suggests that (i) documenting
database usages and constraints is not a common practice in
source code methods, (ii) developers do not update comments
when changes are done to database-related methods, and (iii)
tracing schema constraints through call-chains in the call graph
is not an easy task in most of the cases. While results for RQ1

and RQ2 describe developers rationale for not documenting
database related operations in source code, the findings in
RQ3 present a different perspective in terms of whether current
practices for documenting databases are enough or useful for
supporting developers. Schemas and database documentation
have the purpose of describing the physical data model sup-
porting a system. However, it is still unclear if this type
of documentation is effective and efficient when maintaining
software systems supported on large databases. Another aspect
is the quality of the documentation; when the schema is
complicated or hard to access, documentation is the last line
of defense for understanding/querying the schema. However,
there is also always the problem of outdated documentation.

In addition, understanding/querying updated documenta-
tion can be a time-consuming task, when it is not designed
to support easy browsing or a specific task. For instance, let’s
assume a scenario in which a maintainer wants to identify the

schema constraints that are involved in a feature implemented
in the source code. A feature may involve different operations
on several database objects, and database documentation and
schemas are not intended to describe constraints and relation-
ships at the feature-implementation level. Therefore, the main-
tainer has to identify the constraints by exploring the code and
understanding the available documentations. Moreover, current
approaches for automated documentation aim at describing the
purpose of a code entity (e.g., class, method), but neither target
specific evolution/maintenance tasks nor describe the entity as
part of an architecture (i.e., the description of a code entity in
the GUI layer should not follow the structure of a description
for an entity in the data access layer).

In summary, future work should be devoted to providing
developers with tools for automatic documentation that support
specific tasks, in particular for evolution and maintenance
of DCAs. Our results suggest that automatic generation of
database-related documentation is required to support evolu-
tion/maintenance tasks. Using the results in RQ1 as a ref-
erence, developers working on features involving the 25,450
undocumented database-related methods — from the 3,113
analyzed projects — might find benefit in an automated
approach that assures the methods are properly documented
and updated. Also, the automated approach might benefit the
65.99% of the surveyed developers that did not consider tracing
schema constraints along call chains as a “very easy” nor
“easy” task.

E. Threats to Validity

The construct threat to validity relates to the observations
from the developer survey and results of mining the database
usage. In terms of our survey, we did not infer behavior from
the survey and only reported the experience as indicated by
developers and we do no provide rationale for the observations.
Since we relied on projects on GitHub, it is possible that
project histories are incomplete due to the relative young age
of the forge or that releases were not properly tagged. In
terms of internal threats to validity, it is possible that the
developers responding to the survey had more difficulty with
database-related documentation. However, the results of the
survey suggest that participants had a range of experience
and no single response was overly represented, which would
indicate a clear bias. The external threats to validity relate to
generalizing the results. We do not assert that the results apply
to all developers or developers using other database models
(e.g., ORM). Our results represent a subset of Java projects on
GitHub, and other languages or forges may produce a different
findings. However, GitHub is the most popular forge and our
approach applies to Java projects using JDBC only.

IV. CONCLUSION AND FUTURE WORK

In this paper, we presented a preliminary study aimed
at identifying how developers document database usage at
method-level in source code . The study was two fold: (i)
we surveyed 147 open source developers about their practices
for documenting database usages and constraints at source
code level, and (ii) we mined the source code of 3,113 open
source systems to measure the amount of database-related
methods with header comments, and the coevolution of the
comments with method changes. Our main findings suggest



that documenting methods with database accesses is not a com-
mon practice, and the the surveyed developers consider that
documentation of schema constraints should not be included
in the source code and it is a responsibility of the schema or
external documentation. However, the impact of using database
documentation to support evolution and maintenance tasks
needs to be evaluated and analyzed more carefully by the re-
search and industry communities. For instance, despite the high
confidence of surveyed developers on database documentation,
about 66% of them answered that tracing schema constraints
along call-chains in the source code (which is a common task
for maintainers of DCAs) is a moderate/very hard challenge.
Therefore, future efforts on automatic approaches for arti-
facts documentation should also consider information extracted
from the database and should be tasks-oriented instead of being
general purpose. By the time this paper was written and to the
best of our knowledge, no approach has been developed to
generate documentation that takes into account the data model
represented in database schemas, and there is no approach
available that supports database schema understanding during
evolution and maintenance of DCAs.

Acknowledgements. This work is supported in part by
the NSF CNS-1510239, CCF-1253837, CCF-1525902 and
CCF-1218129 grants. Any opinions, findings, and conclusions
expressed herein are the authors’ and do not necessarily reflect
those of the sponsors.

REFERENCES

[1] F. Rahman, D. Posnett, I. Herraiz, and P. Devanbu, “Sample size vs.
bias in defect prediction,” in FSE’13, 2013, pp. 147–157.

[2] K. Bakshi, “Considerations for big data: Architecture and approach,” in
IEEE Aerospace Conference, 2012, pp. 1–7.

[3] R. Agrawal, T. Imieliński, and A. Swami, “Mining association rules
between sets of items in large databases,” in ACM SIGMOD Record,
vol. 22, no. 2, 1993, pp. 207–216.

[4] D. Qiu, B. Li, and Z. Su, “An empirical analysis of the co-evolution
of schema and code in database applications,” in FSE’13, 2013, pp.
125–135.

[5] B. Curtis, H. Krasner, and N. Iscoe, “A field study of the software design
process for large systems,” Communications of the ACM, vol. 31, no. 11,
pp. 1268–1287, 1988.

[6] B. Fluri, M. Wursch, and H. Gall, “Do code and comments co-
evolve? on the relation between source code and comment changes,” in
WCRE’07, 2007, pp. 70–79.

[7] B. Fluri, M. Würsch, E. Giger, and H. C. Gall, “Analyzing the co-
evolution of comments and source code,” Software Quality Journal,
vol. 17, no. 4, pp. 367–394, 2009.

[8] M. Kajko-Mattsson, “A survey of documentation practice within cor-
rective maintenance,” Empirical Software Engineering, vol. 10, no. 1,
pp. 31–55, 2005.

[9] M. Goeminne, A. Decan, and T. Mens, “Co-evolving code-related and
database-related changes in a data-intensive software system,” in CSMR-
WCRE’14, 2014, pp. 353–357.

[10] D. Sjøberg, “Quantifying schema evolution,” Information and Software
Technology, vol. 35, no. 1, pp. 35–44, 1993.

[11] A. Maule, W. Emmerich, and D. S. Rosenblum, “Impact analysis of
database schema changes,” in ICSE’08, 2008, pp. 451–460.

[12] J.-M. Petit, F. Toumani, J.-F. Boulicaut, and J. Kouloumdjian, “Towards
the reverse engineering of renormalized relational databases,” in Inter-
national Conference on Data Engineering, 1996, pp. 218–227.

[13] J.-M. Petit, J. Kouloumdjian, J.-F. Boulicaut, and F. Toumani, “Using
queries to improve database reverse engineering,” in Entity-Relationship
Approach—ER’94 Business Modelling and Re-Engineering. Springer,
1994, pp. 369–386.

[14] R. Alhajj, “Extracting the extended entity-relationship model from a
legacy relational database,” Information Systems, vol. 28, no. 6, pp.
597–618, 2003.

[15] C. M. Kuok, A. Fu, and M. H. Wong, “Mining fuzzy association rules
in databases,” ACM Sigmod Record, vol. 27, no. 1, pp. 41–46, 1998.

[16] R. P. Buse and W. R. Weimer, “Automatic documentation inference for
exceptions,” in ISSTA’08, 2008, pp. 273–282.

[17] G. Sridhara, E. Hill, D. Muppaneni, L. Pollock, and K. Vijay-Shanker,
“Towards automatically generating summary comments for java meth-
ods,” in ASE’10, 2010, pp. 43–52.

[18] L. Moreno, J. Aponte, G. Sridhara, A. Marcus, L. Pollock, and K. Vijay-
Shanker, “Automatic generation of natural language summaries for java
classes,” in ICPC’13, 2013, pp. 23–32.

[19] L. Moreno, A. Marcus, L. Pollock, and K. Vijay-Shanker, “Jsummarizer:
An automatic generator of natural language summaries for java classes,”
in ICPC’13, 2013, pp. 230–232.

[20] L. F. Cortés-Coy, M. Linares-Vásquez, J. Aponte, and D. Poshyvanyk,
“On automatically generating commit messages via summarization of
source code changes,” in SCAM’14, 2014, pp. 275–284.

[21] M. Linares-Vásquez, L. F. Cortés-Coy, J. Aponte, and D. Poshyvanyk,
“Changescribe: A tool for automatically generating commit messages,”
in ICSE’15, Formal Research Tool Demonstration, 2015, pp. 709–712.

[22] H. A. Nguyen, T. T. Nguyen, H. V. Nguyen, and T. N. Nguyen, “idiff:
Interaction-based program differencing tool,” in ASE’15, 2011, pp. 572–
575.

[23] C. Parnin and C. Görg, “Improving change descriptions with change
contexts,” in MSR’08, 2008, pp. 51–60.

[24] D. Jackson and D. A. Ladd, “Semantic diff: A tool for summarizing
the effects of modifications,” in ICSM’94, 1994, pp. 243–252.

[25] G. Canfora, L. Cerulo, and M. Di Penta, “Ldiff: An enhanced line
differencing tool,” in ICSE’09, 2009, pp. 595–598.

[26] R. Buse and W. Weimer, “Automatically documenting program
changes,” in ASE’10, 2010, pp. 33–42.

[27] L. Moreno, G. Bavota, M. D. Penta, R. Oliveto, A. Marcus, and
G. Canfora, “Automatic generation of release notes,” in FSE’14, 2014.

[28] P. W. McBurney and C. McMillan, “Automatic documentation gener-
ation via source code summarization of method context,” in ICPC’14,
2014, pp. 279–290.

[29] B. Li, M. Grechanik, and D. Poshyvanyk, “Sanitizing and minimizing
databases for software application test outsourcing,” in ICST’14, 2014,
pp. 233–242.

[30] “GitHub API. https://developer.github.com/v3/. Last accessed:
2015/01/15.”

[31] “Qualtrics. http://www.qualtrics.com.”


